UNIVERSITY OF CALIFORNIA College of Engineering Department of Materials Science & Engineering

Mark Asta MAT SCI 103 Spring, 2018

mdasta@berkeley.edu

Phase Transformations & Kinetics

LOGISTICS

Course Website bCourses (MAT SCI 103 –LEC 001)

Lecture MWF 11am-12pm HMMB 348

Makeup lectures on Wednesdays, 5-6pm HMMB 348

Discussion W 6-7pm HMMB 348

GSI Danny Broberg, <u>dbroberg@berkeley.edu</u>

Office Hours Professor Asta: M&W 1-2:30pm, HMMB 319

Danny Broberg (GSI): Th & Fri, 10-11 am, HMMB 475

Textbook David A. Porter, Kenneth E. Easterling and Mohamed Y. Sherif,

Phase Transformations in Metals and Alloys, 3rd Edition, CRC

Press (2009).

The information in the textbook will be supplemented by material taken from several other textbooks and related resources. All such material will be uploaded to the course

website.

Lectures Lectures will make use of boardwork, with some powerpoint

figures used to augment the content. Although the powerpoint figures will be posted on the course website, the material presented on the board will not be. You are encouraged to attend the lectures, as they will augment what is presented in

the textbook.

GRADING

"As a member of the UC Berkeley community, I act with honesty, integrity and respect for others" (http://www.asuc.org/honorcode/index.php)

Ethics

Please remember that this is your honor code. It is a simple pledge that will serve you well during your academic career, and provide a solid foundation for success in your career as a practicing professional, when you will be held to even higher standards.

Course Grade

There are no individual thresholds assigned to the different components of your grade. All components are scored, weighted, pooled, then mapped onto a curve for a course grade determination at the end of the semester, based on the following guidelines.

Homework 25%

<u>Due dates</u>: Homework assignments are to be submitted electronically on the course website by 11:59 pm on Fridays. Deadlines are firm, to allow for timely uploading of solutions as additional study guides. When computing the final homework grade, the lowest two scores on the assignments will be dropped. No late assignments will be accepted.

<u>Regrade policy</u>: Homeworks will be graded by the course reader. If you have a question about the grading of an assignment, you must submit a hardcopy of the homework, with a cover sheet explaining your rationale for requesting more points. This must be submitted to the GSI within one week after the homework has been returned. **After one week regrades will not be considered.**

Your homework submissions must be your own work. The objective of these assignments is to guide your self-learning. Homework is not meant to be a "group learning" exercise, and should not be an altered version of work from others. Homework sets containing similar solutions may be considered academic dishonesty, in which case zero points will be awarded for the assignment and a report to the Center for Student Conduct will be considered.

Midterms 40%

Two midterms will be given on the dates listed in the table below. The midterms will be held in class. The exams will be closed-book and you will be provided formula sheets with relevant equations. Midterms are not cumulative. The first exam will test material from the first six weeks, and the second midterm will cover material from the next six weeks.

Regrade policy: If you have a question about the grading of an exam, you must submit it, with a cover sheet explaining your rationale for requesting more points, to the GSI within one week after the exam has been returned. After one week regrades will not be considered.

Final Exam 35%

A cumulative three hour final exam will be held on Tuesday, May 8 from 7-10 pm.

COURSE CONTENT AND SCHEDULE

Date	Section	Topics	HW/Exams
Wed, 1/17	11am-12pm	No Class	
Wed, 1/17	6-7pm	No Class	
Fri, 1/19	11am-12pm	Lecture 1:	
. ,		Course Syllabus and Introduction	
		Introduction to Thermodynamics	
Mon, 1/22	11am-12pm	Lecture 2:	
		Single Component Free Energy Curves	
		Pressure-Temperature Phase Diagrams	
Wed, 1/24	11am-12pm	Lecture 3:	
		Clausius-Clapeyron Equation	
		Gibbs Phase Rule	
Wed, 1/24	5-6pm	Lecture 4 (makeup):	
		Phase Transformation Driving Forces	
		Binary Mixtures	
Wed, 1/24	6-7pm	Discussion	
Fri, 1/26	11am-12pm	Lecture 5:	HW01
		Gibbs Free Energies for Binary Mixtures	
		Method of Intercepts, Common Tangent	
Mon, 1/29	11am-12pm	Lecture 6:	
		Binary phase diagrams (I)	
		Ideal-Solution "Lens" Diagram	
Wed, 1/31	11am-12pm	Lecture 7:	
		Regular Solution Model	
		Miscibility Gaps	
Wed, 1/31	6-7pm	Discussion	
Fri, 2/2	11am-12pm	Lecture 8:	HW02
		Bragg Williams Model	
		Order-Disorder Transitions	
Mon, 2/5	11am-12pm	Lecture 9:	
		Binary phase diagrams (II)	
		Eutectic Phase Diagrams	
Wed, 2/7	11am-12pm	Lecture 10:	
		Binary phase diagrams (III)	
		Invariant Equilibria and Gibbs Phase Rule	
Wed, 2/7	5-6pm	Lecture 11 (makeup):	
		Binary phase diagrams (IV)	
		More Examples of Invariant Equilibria	
Wed, 2/7	6-7pm	Discussion	
Fri, 2/9	11am-12pm	Lecture 12:	HW03
		Ternary phase diagrams (I)	
Mon, 2/12	11am-12pm	Lecture 13:	
		Ternary phase diagrams (II)	

Wed, 2/14	11am-12pm	Lecture 14:	
, ,	r	Ternary phase diagrams (III)	
Wed, 2/14	5-6pm	Lecture 15 (makeup):	
	-	Introduction to Diffusion	
		Fick's First Law	
Wed, 2/14	6-7pm	Discussion	
Fri, 2/16	11am-12pm	Lecture 16:	HW04
		Fick's Second Law	
Mon, 2/19	11am-12pm	Campus Holiday	
Wed, 2/21	11am-12pm	Lecture 17:	
		Solutions to Diffusion Equation	
Wed, 2/21	5-6pm	Lecture 18 (makeup):	
		Diffusion Mechanisms (I)	
Wed, 2/21	6-7pm	Discussion	
Fri, 2/23	11am-12pm	Lecture 19:	HW05
		Diffusion Mechanisms (II)	
Mon, 2/26	11am-12pm	Lecture 20:	
		Interdiffusion and Kirkendall Effect	
Wed, 2/28	11am-12pm	Lecture 21:	
		Interdiffusion, Tracer Diffusion and Intrinsic	
THE 1 0 (00	6.7	Diffusion Coefficients	
Wed, 2/28	6-7pm	Midterm Review	WW. 4 3 5
Fri, 3/2	11am-12pm	Midterm 1	EXAM
Mon, 3/5	11am-12pm	Lecture 22:	
Mad 2 /7	11 12	Mobilities and Thermodynamic Factors	
Wed, 3/7	11am-12pm	Lecture 23:	
		Interfacial Energy and Crystalline Anisotropy	
Wed, 3/7	5-6pm	Lecture 24 (makeup):	
wea, 3/7	J-opin	Equilibrium Crystal Shape	
		Wulff Construction	
Wed, 3/7	6-7pm	Discussion	
Fri, 3/9	11am-12pm	Lecture 25:	HW06
111,075		Grain Boundaries	11.1.00
	ļ	Grain Boundary Energy	
Mon, 3/12	11am-12pm	No Class	
Wed, 3/14	11am-12pm	No Class	
Wed, 3/14	6-7pm	Discussion	
Fri, 3/16	11am-12pm	Lecture 26:	HW07
	•	Solid-Solid Heterophase Interfaces	
Mon, 3/19	11am-12pm	Lecture 27:	
,		Homogenous Nucleation (I)	
		Elemental Solid/Liquid Transitions	
Wed, 3/21	11am-12pm	Lecture 28:	
		Homogeneous Nucleation (II)	
		Solid State Transformations, Strain Energy	

Wed, 3/21	6-7pm	Discussion	
Fri, 3/23	11am-12pm	No Class	HW08
Mon, 3/26		Spring Break	
Wed, 3/28		Spring Break	
Fri, 3/30		Spring Break	
Mon, 4/2	11am-12pm	Lecture 29:	
		Heterogeneous Nucleation (I)	
		Binary Systems	
Wed, 4/4	11am-12pm	Lecture 30:	
		Heterogeneous Nucleation (II)	
Wed, 4/4	6-7pm	Discussion	
Fri, 4/6	11am-12pm	Lecture 31:	HW09
		Heterogeneous Nucleation (III)	
Mon, 4/9	11am-12pm	Midterm Review	
Wed, 4/11	11am-12pm	Midterm 2	EXAM
Wed, 4/11	6-7pm	No Class	
Fri, 4/13	11am-12pm	Lecture 32:	
		Avrami Equation	
Mon, 4/16	11am-12pm	Lecture 33:	
		TTT Diagrams	
Wed, 4/18	11am-12pm	Lecture 34:	
		Interface Mobility	
Wed, 4/18	6-7pm	Discussion	
Fri, 4/20	11am-12pm	Lecture 35:	HW10
		Diffusion Limited Growth	
		Ostwald Ripening	
Mon, 4/23	11am-12pm	Lecture 36:	
		Spinodal Decomposition (I)	
Wed, 4/25	11am-12pm	Lecture 37:	
		Spinodal Decomposition (II)	
Wed, 4/25	6-7pm	Discussion	
Fri, 4/27	11am-12pm	Lecture 38:	HW11
		Spinodal Decomposition (III)	
Mon, 4/30		RRR: Reviews TBA	
Wed, 5/2		RRR: Reviews TBA	
Fri, 5/4		RRR: Reviews TBA	
Tues, 5/8	7-10pm	Final Exam Tuesday May 8, 7-10pm	EXAM