Course #: Computer Science 189

Course Title: Introduction to Machine Learning

Instructors: Jitendra Malik

Alexei Efros

Offering: Spring 2014 Location: 100 GPB

Time: TuTh 2-330P

Prerequisites: Mathematics 53, 54; Computer Science 70; Computer Science 188 or consent

of instructor.

Requirements:

• Homework will include both traditional written problems as well as programming exercises.

One midterm exam and one final exam.

Grading (approximate):

Homework 40%, Midterm 20%, Final Exam 40%

Late policy

Everyone can have 5 slip days for the entire course.

Textbook:

• Kevin Murphy, "Machine Learning: A Probabilistic Perspective," MIT Press (2012).

Additional References:

- Trevor Hastie, Rob Tibshirani, and Jerry Friedman, "Elements of Statistical Learning" (2nd edition), Springer, 2009 (pdf online)
- A. Rajaraman, J. Leskovec and J. Ullman, Mining of Massive Datasets, v2 (pdf online)

Syllabus (approximate):

- Introduction: applications, approaches. Two canonical problems: digit recognition and spam detection. Performance assessment.
- · Linear classification
 - · Perceptron algorithm
 - Support vector machines (SVMs)
 - The importance of good features
- · Statistical background
 - · Decision theory; Bayes risk
 - Maximum likelihood estimation
 - Frequentist vs. Bayesian approaches
 - The multivariate normal distribution
- Linear regression
 - Least squares
 - Shrinkage methods-ridge regression, lasso

- · Linear Classification, revisited
 - · Logistic regression
 - Linear Discriminant Analysis
- Brief primer on optimization
- · Support vector machines revisited
 - Algorithms
 - The kernel trick
- Neural networks
 - Multilayer perceptrons
 - Variations such as convolutional nets; examples
 - Deep Learning
- Decision trees
 - · Classification and regression trees
 - Random Forests
- Boosting
- Nearest neighbor methods
 - · k-nearest-neighbor
 - Properties of high-dimensional spaces
 - · distance learning
 - Efficient indexing and retrieval methods
- Theoretical analysis of machine learning problems and algorithms
 - Generalization error bounds; VC dimension
- Unsupervised methods
 - Dimensionality reduction
 - Clustering
 - · Density estimation
- · Applications in Data Mining
 - collaborative filtering
 - the power and the peril of Big Data