- 1. Define: Linear independence, rank of a matrix A, basis (of a subspace), span of $\underline{v}_1, \underline{v}_2, \underline{v}_3$.
- 2. Let A be the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{vmatrix} \cdot \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

Find A^{-1} and det A.

3. Let A be the matrix

$$\begin{pmatrix} 1 & 0 & 2 & 3 \\ 2 & -1 & 0 & 1 \end{pmatrix}.$$

Find a basis for the null space of A. Explain how you know it is a basis.

- 4. (i) Give an example of non-zero matrices A, B whose product is zero.
 - (ii) Show that if A, B are square matrices, the dimension of the null space of B is zero, and BA = 0, then A = 0.
- 5. (i) Let T be a transformation that maps the vectors $(1,0,0)^T$ and $(0,1,0)^T$ on $(1,2,0)^T$, and maps $(0,0,1)^T$ on $(1,0,1)^T$. Find the matrix that performs T.
 - (ii) Let \mathcal{B} the unit ball $x_1^2 + x_2^2 + x_3^3 \leq 1$; find the volume of the image of \mathcal{B} under T.