

Robert F. Coleman

Do problem 1 and eight of the remaining nine problems. Put your answers, as well as your name, on the exam. Problem 1 is worth 40 points, problems 2-10 are each worth 20 points. Mark below, each problem you want graded. You may use any and only those results discussed in class or in the text.

_ 1	
_ 2	
_ 3	
_ 4	
_ 5	
_ 6	
_ 7	
_ 8	
_ 9	
_ 10	

Total _____

- 1. True/False If false, give a counterexample. If true just say true.
- (i) Suppose M is an $n \times n$ matrix such that $det(M) \neq 0$. Then the rows of M form a basis of \mathbb{R}^n .
- (ii) The vectors in \mathbb{R}^3 , (1,1,1), (1,2,4), (1,3,9), (1,4,16) are independent.
- (iii) There are infinitely many solutions (x, y) to the system of equations: 2x + y = 3, -3x + y = -2 and 4x + y = 5.
- (iv) If M and P are $n \times n$ matrices and P is invertible then rank(M) = rank(MP).
- (v) If the characteristic polynomial of a square matrix has multiple roots, the matrix is not diagonalizable.
- (vi) If A and B commute and v is an eigenvector for both A and B, then v is an eigenvector for AB.
- (vii) If A is invertible, then AB is invertible if and only if $det(B) \neq 0$.
- (viii) If A has an orthonormal eigenbasis, then A is symmetric.
- (ix) Any set of three pairwise independant vectors in \mathbb{R}^3 is a basis for \mathbb{R}^3 .
- (x) If a real matrix M has no real eigenvalues, then the equation v' = Mv has no real valued solutions.

- (xi) Suppose V is an n dimensional vector space with an inner product. Then the maximal number of distinct pairwise orthogonal subspaces of V is n.
- (xii) The determinant of an $n \times n$ (n > 0) square matrix M is zero if and only if one of the rows of M is a linear combination of the other rows.
- (xiii) The product of two diagonalizable matrices is diagonalizable.
- (xiv) The sum of two projections is a projection.
- (xv) Similar matrices have the same eigenvalues.
- (xvi) If M is a square matrix in row-echelon form with a 1 in each row, then M is invertible.
- (xvii) If p and q are continuous functions on [0,1], the set of functions $f \in \mathcal{C}^2(I)$ such that f'' + pf' + qf = 0 is a vector space.
- (xviii) If M is a constant 2×2 matrix with no real eigenvalues, the solutions of v' = Mv are bounded.
- (xix) If y_1 and y_2 consitute a pair of fundamental solutions of y'' + p(x)y' + q(x)y = 0 on I, they can have no common zeroes.
- (xx) The operator on differentiable functions $f \mapsto (f')^2$ is linear.

2. Let A be an $n \times n$ matrix. Define a linear map d_A from \mathbf{M}_n to itself as follows:

$$d_A(X) = AX - XA.$$

Show if A is symmetric the rank of d_A is at most $n^2 - n$.

Solution. dim $\mathbf{M}_n = n^2$ so by the rank plus nullity theorem it suffices to show dim $\ker d_A \geq n$. First note if A and X are diagonal, $X \in \ker d_A$. Also, the set D of diagonal matrices is a subspace of \mathbf{M}_n of dimension n which does it in this case.

If A is symmetric there exists an invertible matrix M so that $M^{-1}AM$ is diagonal and so

$$0 = (M^{-1}AM)X - X(M^{-1}AM) = M^{-1}(A(MXM^{-1}) - (MXM^{-1})A)M.$$

Thus $A(MXM^{-1}) - (MXM^{-1})A = 0$ and $MAM^{-1} = 0$. Since MDM^{-1} is a subspace of dimension n, we get what we want.

3. Show if Q is a quadratic form on \mathbf{R}^n , $Q(v) = \langle v, v \rangle$ for an inner product \langle , \rangle if and only if the eigenvalues of the corresponding matrix are positive.

Solution. Let M_Q be the matrix corresponding to Q so that

$$Q(v) = M_O v \cdot v.$$

We know that there is an orthonormal M_Q -eigenbasis w_1, \ldots, w_n of \mathbf{R}^n . Suppose $M_Q w_i = \lambda_i w_i, \lambda_i \in \mathbf{R}$. Then,

$$Q(a_1w_1 + \dots + a_nw_n) = \lambda_1a_1^2 + \dots + \lambda_na_n^2.$$

Thus if $\langle v, w \rangle = M_Q v \cdot w$, $\langle v, v \rangle > 0$ for all $v_{\neq 0}$ if and only if all the λ_i are positive.

4. Determine whether or not

$$\begin{pmatrix}
2 & -1 & 1 & 0 \\
0 & 1 & 1 & 2 \\
-1 & 2 & 1 & 3 \\
3 & 1 & 4 & 5
\end{pmatrix}$$

is invertible. If so compute the inverse, if not, compute the rank.

5. Suppose
$$B = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $C = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$ and

$$M = B \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} C.$$

Compute BC and use this to find the solutions v(T) of the equation

$$v' = Mv$$

such that $v(0) = (1, 0, 0)^T$.

6. Let A be a 2×2 matrix. Suppose $A^n = 0$ for some integer n, show $A^2 = 0$.

7.. Solve the heat equations on [0, 1];

$$u_t = u_{xx} & w_t = w_{xx} \\ (i) & u(0,t) = 1 \quad u(1,t) = 0 & \text{and} \quad \text{(ii)} \quad w(0,t) = 0 \quad w(1,t) = 1 \ . \\ u(x,0) = x & w(x,0) = x.$$

What equation with what initial conditions does au + bw satisfy where a and b are scalars.

8. Let A be a diagonalizable $n \times n$ matrix with eigenvalues $\lambda_1, \dots, \lambda_n$. Suppose that $|\lambda_1| < 1$ for every i. Prove that as $m \mapsto \infty$, all the entries of A^m approach zero.

9. Find a 2×2 constant matrix M over ${\bf R}$ such that

$$\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{-x}, \quad \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{4x} \right\}$$

is a set of fundamental solutions of the equation v' = Mv.

10. Suppose A and B are commuting $n \times n$ matrices. (a) Show that if v is an eigenvector of B with eigenvalue b, so is Av. (b) Show that if B is diagonalizable and the diagonal entries are distinct then A is diagonalizable also.

Solution.

(a)

$$B(Av) = (BA)v = (AB)v = A(Bv) = A(bv) = b(Av)$$

(b) The hypotheses imply, there is a basis v_1, \ldots, v_n of \mathbf{R}^n such that $Bv_i = \lambda_i v_i$ and $\lambda_i \neq \lambda_j$ if $i \neq j$. It follows, in particular, that the set V_i of vectors v such that $Bv = \lambda_i v$ is a one dimensional subspace of \mathbf{R}^n spanned by v_i .

It follows from (a) that $Av_i \in V_i$ and so there exist scalars $\mu_i \in \mathbf{R}$ so that $Av_i = \mu_i v_i$. So the matrix of A with respect to this basis is

$$\begin{pmatrix} \mu_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mu_n \end{pmatrix}$$