
Mathematics 1B. Fall Semester 2006 Professor: Daniel Tataru

Midterm 2 Solutions
1(20) . Determine the interval of convergence of the following series. Do they converge at endpoints ?

a)
∞∑

n=1

(x− 1)2n

√
n 4n

Solution: Using the ratio test we compute

lim
n→∞

(x− 1)2(n+1)

√
n + 1 4n+1

(x− 1)2n

√
n 4n

= lim
n→∞

(x− 1)2

4

√
n√

n + 1
=

(x− 1)2

4

The limit is less than 1 if |x− 1| < 2. Hence the radius of convergence is R = 2. At the endpoints
we have x− 1 = ±2 and the series becomes

∞∑
n=1

1√
n

which is a divergent p-series. Thus the interval of convergence is (−1, 3).

b)
∞∑

n=2

ln

(
n + 1

n− 1

)
xn

Solution: Using the Taylor expansion for ln(1 + x) we write

ln

(
n + 1

n− 1

)
= ln

(
1 +

2

n− 1

)
=

2

n− 1
− 2

(n− 1)2
+ · · ·

Then for the ratio test we compute

lim
n→∞

ln

(
n + 2

n

)
xn+1

ln

(
n + 1

n− 1

)
xn

= x lim
n→∞

2

n
− 2

n2
+ · · ·

2

n− 1
− 2

(n− 1)2
+ · · ·

= x

The limit is less than 1 if |x| < 1. Hence the radius of convergence is R = 1. At the endpoint
x = −1 we obtain the alternating series

∞∑
n=2

(−1)n ln

(
1 +

2

n− 1

)

Due to the expansion above we have ln

(
n + 1

n− 1

)
↘ 0 as n →∞ therefore the series converges by

the alternating test.
At the endpoint x = 1 we obtain the series

∞∑
n=2

ln

(
1 +

2

n− 1

)

Due to the expansion above this is comparable to the harmonic series
∞∑

n=2

2

n− 1
which diverges.

Thus the interval of convergence is [−1, 1).



2(20) . Find the Maclaurin series expansion of the following functions. Determine where the expansions
are valid (i.e. for what values of x they converge).

a) f(x) =
x

x2 + x− 2

Solution: Using partial fractions we write

f(x) =
x

x2 + x− 2
=

x

(x + 2)(x− 1)
=

2

3(x + 2)
+

1

3(x− 1)
=

1

3

 1

1 +
x

2

− 1

1− x


Then using the geometric series we write

1

1− x
=

∞∑
n=0

xn,
1

1 +
x

2

=
∞∑

n=0

(−1)n2−nxn

Summing up we obtain

f(x) =
∞∑

n=0

1

3

(
(−1)n2−n − 1

)
xn

The radius of convergence is 1 for the first term and 2 for the second, so after adding them up we
obtain R = 1. At the endpoints x = ±1 the series diverges since the general term does not go to
0. Hence the interval of convergence is (−1, 1).

b) f(x) =
√

1 + x2

Solution: We use the binomial series

√
1 + x =

∞∑
n=0

(
1
2

n

)
xn =

∞∑
n=0

1
2
(1

2
− 1) · · · (1

2
− n + 1)

n!
xn = 1 +

x

2
+

∞∑
n=2

(−1)n−1 1 · 3 · · · (2n− 3)

2nn!
xn

and replace x by x2 to obtain

√
1 + x2 = 1 +

x2

2
+

∞∑
n=2

(−1)n−1 1 · 3 · · · (2n− 3)

2nn!
x2n

The binomial series converges for |x| < 1 therefore our series also converges for |x| < 1. This can
also be verified directly using the ratio test. At the endpoints x = ±1 we obtain the alternating
series

∞∑
n=0

(−1)n−1an, an =
1 · 3 · · · (2n− 3)

2nn!

It is easily verified that the sequence an is decreasing, but harder to show that it converges to 0.
We have

an =
1

2

3

4
· · · 2n− 3

2n− 2
· 1

2n
<

1

2n
→ 0

This implies that an → 0. Then the interval of convergence is [−1, 1].



3(20) . a) Find the third order Taylor polynomial of tan x at π/4.
Solution: For f(x) = tan x we compute

f ′(x) = sec2 x, f ′′(x) = 2 sec2 x tan x, f ′′′(x) = 4 sec2 x tan2 x + 2 sec4 x

We evaluate them at π/4 using tan π/4 = 1, sec π/4 =
√

2. This gives

f(π/4) = 1, f ′(π/4) = 2, f ′′(π/4) = 4, f ′′′(π/4) = 16

Then the third order Taylor polynomial of tan x at π/4 is

P3(x) = 1 + 2(x− π/4) + 2(x− π/4)2 +
8

3
(x− π/4)3

b) Find the Maclaurin series for a function f which solves the differential equation

f ′′(x) = xf(x), f(0) = 1, f ′(0) = 0

What is the radius of convergence ?

Solution: If f(x) =
∞∑

n=0

anx
n then f ′(x) =

∞∑
n=1

nanx
n−1 therefore

f ′(x) =
∞∑

n=2

n(n− 1)anx
n−2 = 1 · 2a2 + 2 · 3a3x + 3 · 4a4x

2 + · · ·+ (n + 2)(n + 1)an+2x
n + · · ·

On the other hand

xf(x) =
∞∑

n=0

anx
n+1 = a0x + a1x

2 + · · ·+ an−1x
n + · · ·

Identifying the coefficients in the two power series we obtain a2 = 0 and

(n + 2)(n + 1)an+2 = an−1, n ≥ 1

From the initial data we also know that a0 = 1, a1 = 0. Then we can iteratively compute the
coefficients an (e.g. we use the above formula with n = 1 to compute a3, etc.):

1, 0, 0,
1

2 · 3
, 0, 0,

1

2 · 3 · 5 · 6
, 0, 0,

1

2 · 3 · 5 · 6 · 8 · 9
, · · ·

This gives the Maclaurin series

f(x) =
∞∑

n=0

1

2 · 3 · 5 · 6 · · · (3n− 1)3n
x3n

To compute the radius of convergence we use the ratio test. We have

lim
n→∞

x3n+3

2 · 3 · 5 · 6 · · · (3n− 1)3n(3n + 2)(3n + 3)

x3n

2 · 3 · 5 · 6 · · · (3n− 1)3n

= lim
n→∞

x3

(3n + 2)(3n + 3)
= 0

Hence the series converges for all x.



4(20) . Sketch the direction field of
y′ = y3 − y

and determine the equilibrium solutions. Are they stable ?
Solution: a) We check the sign of y′:

y −1 0 1

y′ − 0 + 0 − 0 +

The equilibrium solutions are y = ±1 and y = 0.
b) We sketch the direction field (see the picture in problem 1b, Section 9.2 but with the x axis
reversed)
c) Sketch a few solutions which follow the direction field. The solution y = 0 is stable, but y = ±1
are not.



5(20) . Solve the initial value problems

a)
dx

dt
= 2t(1 + x2), x(0) = 0

Solution: This is a separable equation. We compute

dx

1 + x2
= 2tdt,

∫
dx

1 + x2
=

∫
2tdt + C

which gives
tan−1 x = t2 + C

Using the initial data we obtain C = 0, therefore the solution is

x(t) = tan t2

b)
dx

dt
= x + sin t, x(0) = 1

This is a linear equation, which we rewrite as

x′ − x = sin t

The integrating factor is e−t. Multiplying by it in both sides gives

e−tx′ − e−tx = e−t sin t ⇔ (e−tx)′ = e−t sin t

Hence integrating by parts we obtain

e−tx(t) =

∫
e−t sin tdt = −1

2
e−t(sin t + cos t) + C

so the general solution is

x(t) = −1

2
(sin t + cos t) + Cet

Using the initial data in this equation gives C = 3
2
, therefore

x(t) = −1

2
(sin t + cos t) +

3

2
et


