MATH 185 — MIDTERM 1

Problem #1. Prove that

$$\overline{z_1 z_2} = \bar{z_1} \bar{z_2}$$

for all complex numbers z_1, z_2 .

Problem #2. Write down the precise definition of the complex logarithm

log z.

Problem #3. Find all the solutions z of the equation

$$z^6 = 2 + 2i.$$

Problem #4. Use the Cauchy-Riemann equations in polar coordinates to show that the function

8

 $f(z) = z^a = r^a e^{ia\theta}$

is analytic, where a is real and $z = re^{i\theta}$ for $r > 0, -\pi < \theta < \pi$.

(A+6)+(b) 2 [a] (a+b) > |a|-167

(a)+16) 2 la+6)

Problem #5. Show that if |z| = 3, then

$$\left|\frac{1}{z^2+3z+2}\right| \le \frac{1}{2}.$$

(Hint: factor the denominator.)

 $\left|\frac{1}{z^2+3z+2}\right| \leq \frac{1}{2}.$

Problem #6. Assume $f: \mathbb{C} \to \mathbb{C}$ is differentiable at a point z_0 . State and prove the Cauchy-Riemann equations.

[a-eb 1 > max (191-14), 14-14) 2 (141-161

Problem #7. Let u and v be harmonic functions, and suppose that

z = u + iv v is the conjugate of u. Show that

$$\frac{z}{2} = u^2 - v^2 + 2iuv$$
 $e^{u^2 - v^2} \cos(2uv)$

 $e^{u^2-v^2}\cos(2uv)$ and $e^{u^2-v^2}\sin(2uv)$

are harmonic.

e harmonic. (Hint: e^{z^2} is analytic.)

Problem #8. Show directly from the definition of the derivative that the function

$$f(z) = \bar{z}^2$$

is differentiable only at z = 0.

(Do not use the Cauchy-Riemann equations.)