MATH 185 — MIDTERM 2

Problem #1. Show by a direct calculation that
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where C denotes the positively oriented unit circle, centered at 0.

(Do not use the Cauchy Integral Formula.)

Problem #2. Calculate
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for the contour C as drawn:

Problem #3. Show that if f is analytic on and inside a simple
closed curve C, then
/ fdz=0.
c

(Hints: You may assume f is continuously differentiable. Use Green'’s
Theorem, which says
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where R is the region inside C.}
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Problem #4. Assume f is analytic within the disk |2| < R. Show
how to use Cauchy’s integral formula to write the Taylor’s series ex-
pansion
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for |z| < R.
(You do not need to show rigorously that this series converges.)

Problem #5. Suppose that f is an entire function. Assume for the
positive integer m that

[F(2)| < M(1+ |2]™)
for some constant M and all z € C.
Show f is a polynomial of degree at most m. That is,
f(z) =ap+ a1z + apz® -+ - + ap 2™,
for appropriate coefficients ag, ¢, - . . , Gm.
Problem #6. Suppose that f is analytic in the disk D given by
|z — 20| < R. Assume also that
|f(2)] < |f(20)]  forall z€ D.
Prove that |f] is constant within D.

(Hints: Do not just quote the Maximum Modulus Principle. Instead,

first explain why
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where (' denotes the circle with center zp and radius 0 < p < R. Finish

the proof from here.
In fact f is constant within D, but you do not need to show this.)




