MATH 113 - S2 MID-TERM 1

- 1. (6 pts, 1 pt each) Answer True (T) or False (F). You do not need to write your reasoning in your answer book.
- a) The associative law holds in every group.
- b) The commutative law holds in every group.
- c) Every cyclic group is abelian.
- d) An infinite cyclic group has exactly one generator.
- e) If H, K are subgroups of G, then $H \cap K$ is a subgroup of G..
- f) Any two groups of order equal to four, are isomorphic.
- **2.** (7 pts)

Show that if H, K are subgroups of an **abelian** group G, then the set

$$M = \{hk \mid h \in H, k \in K\}$$

is a subgroup of G

3. (7 pts)

Write down the subgroup diagram for the cyclic group $\mathbb{Z}/40\mathbb{Z}$.

 Solution to mid-term. 1.
 (1a) T
 b) F
c) T
·
d) F. For example the infinite
cyclic grown (I, +) has
exactly two generators given
d) F. For example, the infinite cyclic group (II, +) has exactly two generators, given by "1" and "-1".
e) To The subgroups criterion can be readily checked in this
can be readily checked in this
Caso
 f) Fo For example, both
$G_1 = \mathbb{Z}/4\mathbb{Z} \qquad G_2 = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
are anough sel porder 4 hut
G. Go and not is omen which
(G) is credic while Go is not)
$\frac{1}{2}$

o a lo se lo de Merceto le la 1860 de la complició de la Maceta de Adalbada Madadada accidenta de los saconos

	2. We apply the subgroup criterion to M:
	criterion to M:
	Closure: say given
	$m_1 = h_1 k_1$, $h_1 \in H$, $k_1 \in K$
:	$m_2 = h_2 k_2$, $h_2 \in H$, $k_2 \in K$
	We have
	m, • m2
	$= (h_1 k_1) \cdot (h_2 k_2)$
	= h, · (k, h2) · Kz
	= h1. (h2. k1). k2 (°. G is abelian)
	= (h,0 h2) o(k,0 k2) - *
	Since h, h2 &H, k, k2 &K,
	me have by x, that m, om 2 \in M.
	(to be cont'd)

	#*-
	Identity: if ee G is the identity
	Identity: if eeG is the identity of G, then eeH, & eeK,
	and
	e = e • e
	hence e e M.
	Inverse: say m= hok, heH, keK.
	Inverse: say $m = h \cdot k$, $h \in H$, $k \in K$. Then $m^{-1} = k^{-1} \cdot h^{-1}$
	$m^{-1} = k^{-1} \cdot h^{-1}$
	- Triti
	= h-1 o k-1 (again because G is abelian)
	(7 is abelian)
	Since hield, kick, we have
	$m^{-1} \in M$.
	Color M.
	Conclusion: M is a subgroup of G.
- <u> </u>	
· · · · · · · · · · · · · · · · · · ·	
	en 1997 en en 1997 en 1997 en 1997 en 1998 en 1