
Math 110 Professor K. A. Ribet
Midterm Exam April 5, 2005

This exam was an 80-minute exam. It began at 12:40PM. There were 4 problems,
for which the point counts were 18, 10, 10 and 10. The maximum possible score
was 48.

Please put away all books, calculators, electronic games, cell phones, pagers,
.mp3 players, PDAs, and other electronic devices. You may refer to a single
2-sided sheet of notes. Explain your answers in full English sentences as
is customary and appropriate. Your paper is your ambassador when it is
graded. At the conclusion of the exam, please hand in your paper to your
GSI.

1. Label the following statements as TRUE or FALSE, giving a short explanation
(e.g., a proof or counterexample). There are six parts to this problem, which
continues on page 3.

a. A matrix over a field is invertible if and only if it is a product of elementary
matrices.

This is TRUE. We proved the statement in class, so I won’t say more.

b. An n × n matrix with real entries is diagonalizable when considered as an
element of Mn(C) if and only if it is diagonalizable when considered as an element
of Mn(R).

This is simply not true. We could consider, for example, the matrix
(

0 −1
1 0

)
over R. Its characteristic polynomial is t2 + 1. Over R, there are no eigenvalues
because there are no square roots of −1. Over C, the polynomial splits into
distinct factors, so the matrix is diagonalizable. It’s similar to the diagonal
matrix with i and −i on the diagonal.

c. If a matrix over F has m rows and n columns, the row rank of the matrix is
at most n.

This is certainly TRUE because the row rank is the column rank; the column
rank is at most the number of columns because it’s the dimension of the space
spanned by the columns.



d. When A is a square matrix over F , the system of linear equations Ax = b
has exactly one solution if and only if the corresponding homogeneous system
Ax = 0 has exactly one solution.

This is again TRUE. The equation Ax = b has exactly one solution precisely
when b is in the range of LA and the nullity of LA is 0. Because A is a square
matrix, LA has nullity 0 if and only if it is onto and if and only if it is invertible.
Hence Ax = b has exactly one solution precisely when the nullity of LA is 0. (The
question of whether or not b is in the range then becomes moot.) Meanwhile,
the equation Ax = 0 has exactly one solution if and only if the nullity of LA is 0.

e. An upper-triangular matrix with distinct diagonal entries is diagonalizable.

Let A be the matrix. The statement is TRUE because the characteristic poly-
nomial of A is the product (t − a1) · · · (t − an), where the an are the numbers
on the diagonal. Since the characteristic polynomial splits completely and has
roots with multiplity 1, A will be diagonalizable.

f. If A is a n×n real matrix for which 0 = (A−2In)(A−3In)(A−4In)(A−5In),
then at least one of the numbers 2, 3, 4, 5 is an eigenvalue of A.

TRUE again. If the numbers 2, . . . , 5 are not eigenvalues of A, then each of
the factors A − 2In, . . . , A − 5In is invertible. Accordingly, the product (A −
2In)(A− 3In)(A− 4In)(A− 5In) is invertible, which means that it is not 0. (We
understand that n is positive because we never consider 0 × 0 matrices in the
course.)

2. Use mathematical induction to establish a formula for the determinant of an

n × n matrix


0 0 · · · 0 c1

0 0 · · · c2 0
...

... . .
. ...

...
0 cn−1 · · · 0 0
cn 0 · · · 0 0

 that has zero entries except possibly

for the last entry of the first row, the second-to-last entry of the second row,. . . ,
the second entry of the second-to-last row, and the first entry of the last row.
(Such a matrix might be called “anti-diagonal.”)

Let Dn be the indicated determinant when the size of the matrix is n. We
have D1 = c1, D2 = −c1c2, and “so on.” Expanding the determinant along
the first column (or last row), we get that Dn = (−1)n+1cnDn−1. Thus Dn is
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± the product c1 · · · cn, and the question is to see what the sign is. The sign
changes when n is even, so you get something like +, −, −, +, +,. . . . The
nth sign is different from the previous sign if and only if n is even. As far as
I’m concerned, it’s enough that you see this; I’m not super-worried about your
writing Dn = (−1)snc1 · · · cn with an explicit formula for sn. To get an explicit

formula, you can observe that sn is 2 + · · ·+ (n + 1), or
n(n + 3)

2
.

3. Suppose that A ∈ Mn×n(F ) is an invertible matrix over a field F . Show that
there are c0, . . . , cn−1 in F such that

A−1 = cn−1A
n−1 + cn−2A

n−2 + · · ·+ c1A + c0In.

(Example: if A =

 0 0 1
1 0 1
0 1 0

, then A−1 = A + I3.)

By the Cayley–Hamilton theorem, f(A) = 0, where f(t) is the characteristic
polynomial of A. The polynomial (−1)nf(t) starts out tn + · · ·; it looks like
tn + an−1t

n−1 + · · ·+ a0. Note that a0 is ±detA, since f(0) = det(A− 0 · In).
By the hypothesis that A is invertible, a0 is non-zero. On dividing by a0 and
changing some signs, we see that A satisfies a polynomial of the form 1− c0t−
c1t

2−· · ·−cn−1t
n. This means that In = c0A+c1A

2 + · · ·+cn−1A
n−1. Multiply

by A−1 to get the desired expression.

Exhibit a 5×5 complex matrix whose characteristic polynomial is t+2t2 +3t3 +
4t4 − t5.

The answer is given by the displayed matrix on page 316 of the book. The matrix
0 0 0 0 0
1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
0 0 0 1 4

 seems to have the right characteristic polynomial. According

to the book, the proof is represented by Exercise 19. As you remember, I worked
out the proof in class during the last lecture before spring break.

4. Let V be the real vector space P3(R) of polynomials of degree ≤ 3 with
real coefficients. Let β = {1, x, x2, x3} be the standard ordered basis of V .
Let T : V → V ∗ be the linear transformation that sends p ∈ V to fp, where

fp(q) =
∫ 1

0

p(x)q(x) dx. Find [T ]β
∗

β , where β∗ is the dual basis of β.
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To find [T ]β
∗

β , we have to write T (xi) for i = 0, . . . , 3 in terms of the basis β∗.
It is natural to write β = {v0, v1, v2, v3} and β∗ = {f0, f1, f2, f3}, where vi = xi

(i = 0, . . . , 3) and fj(vi) = δij . If f is an element of V ∗, we have f =
∑

cjfj

with cj = f(vj) for each j. For each i, T (vi) is the linear form q 7→
∫ 1

0

xiq(x) dx;

the value of this form on vj is
∫ 1

0

xixj dx =
1

i + j + 1
. Hence the matrix [T ]β

∗

β

is the matrix (aij), 0 ≤ i, j ≤ 3 with aij =
1

i + j + 1
. This matrix is explicitly

1/1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

, I hope.
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