Mathematics 54 Midterm #2 Spring 2009 **Jack Wagoner**

EXAM QUESTIONS

Problem # 1 Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 \end{bmatrix}$$

(A) Rank(A) = 1, Nullity(A) = 4
(B) Rank(A) = 4, Nullity(A) = 1

(C) $\operatorname{Rank}(A) = 3$, $\operatorname{Nullity}(A) = 2$

Problem #2 Let u_1 and u_2 be eigenvectors of a 5×5 matrix A, and let λ_1 and λ_2 be the corresponding eigenvalues. If u_1 and u_2 are linearly independent, then $\lambda_1 \neq \lambda_2$.

Problem #3 The matrix $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix}$

(B) False

is diagonalizable .

(A) True

(A) True (B) False

Problem #4 Let \mathbb{R}^4 be given the standard inner product coming from dot product of vectors. Let $\{x_1, x_2, x_3\}$ be three linearly independent vectors in R^4 , and let $\{v_1, v_2, v_3\}$ be the set of orthogonal vectors coming from $\{x_1, x_2, x_3\}$ by the Gram - Schmidt process. Then

 $v_1 = x_1$ $v_2 = x_2 - \left(\frac{x_1 \bullet v_1}{v_1 \bullet v_1}\right) v_1$ $v_3 = x_3 - (\frac{x_2 \bullet v_1}{v_1 \bullet v_1})v_1 - (\frac{x_2 \bullet v_2}{v_1 \bullet v_2})v_2$ (A) True (B) False

Problem #5 Let A be a 3×3 symmetric matrix with characteristic polynomial $\chi_A(\lambda) = -(\lambda - 1)(\lambda - 5)^2$. Which of the following is true?

(A) Every basis of eigenvectors for A is an orthogonal set of vectors.

(B) There is a basis of eigenvectors for A which is not an orthogonal set of vectors.

Problem #6 Let A be a 5×5 matrix with a basis of eigenvectors $\{v_1, v_2, v_3, v_4, v_5\}$. Consider the matrix $Q = [v_1 \ v_2 \ v_3 \ v_4 \ v_5]$. Which of the following matrices is always diagonal?

(A)
$$QAQ^{-1}$$
 (B) Q^TAQ (C) $Q^{-1}AQ$ (D) None of these.

Problem #7 Let ϵ denote the standard basis for R^2 and let $\alpha = \{u_1, u_2\}$ be the basis for R^2 where

$$u_1 = \begin{bmatrix} 5\\3 \end{bmatrix}$$
 and $u_2 = \begin{bmatrix} 3\\2 \end{bmatrix}$

The change of basis matrix P_{ϵ}^{α} is

(A)
$$\begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}$$
 (B) $\begin{bmatrix} 2 & -3 \\ -3 & 5 \end{bmatrix}$ (C) Neither (A) nor (B).

Problem #8. Consider the basis $\alpha = \{v_1, v_2, v_3\}$ for \mathbb{R}^3 where

$$v_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix} v_2 = \begin{bmatrix} 2\\1\\0 \end{bmatrix} v_3 = \begin{bmatrix} 3\\0\\1 \end{bmatrix}. \text{ Let } x = \begin{bmatrix} 1\\1\\1 \end{bmatrix}. \text{ The coordinate vector}$$

 $[x]_{\alpha}$ of x with respect to α is

(A)
$$\begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
 (B) $\begin{bmatrix} 1\\4\\1 \end{bmatrix}$ (C) $\begin{bmatrix} -4\\1\\1 \end{bmatrix}$ (D) None of these.

Problem #9 Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 1 & 5 \end{bmatrix}$ and let $b = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$.

(9.1) One least squares solution $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ to the linear equations Ax = b is obtained by solving the linear equations Ax = c where c is

$$(\mathbf{A}) \begin{bmatrix} 3\\0\\1 \end{bmatrix} \qquad (\mathbf{B}) \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \qquad (\mathbf{C}) \begin{bmatrix} 3\\-1\\1 \end{bmatrix}$$

(9.2) The normal equations for this problem are

$$2x_1 + 12x_2 = 4$$
$$12x_1 + 27x_2 = 11$$

(A) True (B) False

(9.3) There is only one least squares solution x to this problem.

Problem #10 Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and define an inner product on R^2 by the formula $\langle x, y \rangle = Ax \bullet Ay$ where the right hand side is the usual dot product in R^2 . Let $u = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $W = Span\{u\}$. Let W^{\perp} denote the subspace of all vectors in R^2 which are orthogonal to W.

(10.1)
$$W^{\perp}$$
 consists of all vectors $v = \begin{bmatrix} x \\ y \end{bmatrix}$ where
(A) $x = y$ (B) $x = 0$ (C) $x = -y$

(10.2) The matrix representation of the orthogonal projection P_W onto W with respect to the standard basis is

$$(\mathbf{A}) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad (\mathbf{B}) \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \qquad (\mathbf{C}) \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

Problem #11 Consider the subspace $W = Span\{u_1, u_2\}$ of \mathbb{R}^3 where

$$u_{1} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix} \text{ and } u_{2} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}. \text{ We also have } W = Span\{v_{1}, v_{2}\}$$

where $v_{1} = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/\sqrt{2} \end{bmatrix}$ and $v_{2} = \begin{bmatrix} -1/2 \\ -1/2 \\ 1/\sqrt{2} \end{bmatrix}.$ Consider the bases $\alpha = \{u_{1}, u_{2}\}$
and $\beta = \{v_{1}, v_{2}\}$ for W . The change of basis matrix P_{α}^{β} is

(A)
$$\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
 (B) $\begin{bmatrix} 0 & 1/\sqrt{2} \\ -1/\sqrt{2} & 0 \end{bmatrix}$ (C) $\begin{bmatrix} 1/2\sqrt{2} & 1/2\sqrt{2} & 1/2 \\ 1/\sqrt{2} & 1/\sqrt{2} & 1/2 \\ -1/2 & -1/2 & 1/\sqrt{2} \end{bmatrix}$

Problem #12 Consider the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$ and the basis $\alpha = \{v_1, v_2, v_3\}$ for R^3 where

$$v_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix} v_2 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix} v_3 = \begin{bmatrix} 0\\1\\-1 \end{bmatrix}.$$

(12.1) The matrix representation $[A]^{\alpha}_{\alpha}$ of A

with respect to α is

$$(\mathbf{A}) \begin{bmatrix} 6 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad (\mathbf{B}) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix} \qquad (\mathbf{C}) \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

(12.2) The characteristic polynomial $\chi_A(\lambda)$ of A is

(A)
$$(1-\lambda)(2-\lambda)(3-\lambda)$$
 (B) $-\lambda(6-\lambda)^2$ (C) $\lambda^2(6-\lambda)$

Problem #13 Let A be a 5×5 matrix which satisfies the matrix equation $A^3 = 4A^2 + 5A$. The eigenvalues for A are

(A) $\lambda = 0, -1, 5$ (B) $\lambda = 0, 1, -5$ (C) Neither (A) nor (B).