EECS 120 Fall 2004

Midterm 1 Solutions

- The exam is for one hour and 50 minutes.
- The maximum score is 100 points. The maximum score for each part of each problem is indicated.
- The exam is closed-book and closed-notes. Calculators, computing, and communication devices are NOT permitted.
- Two double-sided sheets of notes are allowed. These should be legible to normal eyesight, i.e. the lettering should not be excessively small.
- No form of collaboration between students is allowed.
 - 1. (10 points) State whether the following are true or false. In each case, give a brief explanation. A correct answer without a correct explanation gets 2 points. A correct answer with a correct explanation gets 5 points.
 - (a) Let x(t) be a continuous time signal. Let $y_1(t)$, $y_2(t)$, and $y_3(t)$ denote the respective ouputs of a causal linear time invariant system to the inputs x(t), $x^2(t)$, and $x^3(t)$. Then $y_3(t)$ can be determined from $y_1(t)$ and $y_2(t)$.
 - (b) If x[n] is a nonnegative sequence with discrete time Fourier transform $X(e^{j\omega})$, then

$$\sum_{n=-\infty}^{\infty} x[n] = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})| d\omega.$$

Solution:

- (a) False. Consider for example $X(j\omega) = \begin{cases} 1 & \text{if } |\omega| \leq 1 \\ 0 & \text{otherwise} \end{cases}$. Then, to find out $y_3(t)$ we would need to know something about the transfer function of the system for frequencies in the range $2 < |\omega| < 3$. However the given information can at most tell us about the transfer function in the range of frequencies $|\omega| \leq 2$.
- (b) False. Take $x[n] = \delta[n] + \delta[n-1]$. Then $X(e^{j\omega}) = 1 + e^{-j\omega}$. We have $\sum_{n=-\infty}^{\infty} x[n] = 2$. Note that $|1 + e^{-j\omega}| < 2$ except when ω is an integer multiple of 2π . Thus

$$\frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})| d\omega < 2 ,$$

so the claimed equality cannot hold.

2. (10 points)

Let x[n] and y[n] be periodic with period 3, with

$$x[n] = \begin{cases} 1 & \text{if } n = -1\\ 2 & \text{if } n = 0\\ 1 & \text{if } n = 1 \end{cases},$$

and

$$y[n] = \begin{cases} -1 & \text{if } n = -1\\ 2 & \text{if } n = 0\\ 1 & \text{if } n = 1 \end{cases}.$$

Let z[n] be the periodic sequence of period 3 that is the periodic convolution of x[n] and y[n], i.e.

$$z[n] = \sum_{l \in \langle 3 \rangle} x[l]y[n-l] .$$

Determine z[n].

Solution: We have

$$z[n] = \sum_{l \in \langle 3 \rangle} x[l]y[n-l] .$$

Hence

$$\begin{split} z[-1] &= x[-1]y[0] + x[0]y[-1] + x[1]y[-2] \\ &= 1 \cdot 2 + 2 \cdot (-1) + 1 \cdot 1 \\ &= 1 \ , \\ z[0] &= x[-1]y[1] + x[0]y[0] + x[1]y[-1] \\ &= 1 \cdot 1 + 2 \cdot 2 + 1 \cdot (-1) \\ &= 4 \ , \\ z[1] &= x[-1]y[2] + x[0]y[1] + x[1]y[0] \\ &= 1 \cdot (-1) + 2 \cdot 1 + 1 \cdot 2 \\ &= 3 \ . \end{split}$$

Since z[n] is periodic with period 3, this determines z[n].

3. (10 points)

Let

$$\Lambda(t) = \left\{ \begin{array}{ll} 1 - \mid t \mid & \text{ if } \mid t \mid \leq 1 \\ 0 & \text{ otherwise} \end{array} \right.$$

Let

$$x(t) = \sum_{n=-\infty}^{\infty} \Lambda(t-2n)\cos(\omega_0 t) .$$

Find the Fourier transform of x(t).

Hint: The function

$$z(t) = \begin{cases} 1 & \text{if } |t| \le \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

has Fourier transform

$$Z(j\omega) = \operatorname{sinc}(\frac{\omega}{2\pi})$$
.

Solution: The Fourier transform of $\Lambda(t)$ is $\operatorname{sinc}^2(\frac{\omega}{2\pi})$. Since

$$\sum_{n=-\infty}^{\infty} \Lambda(t-2n) = \Lambda(t) * (\sum_{n=-\infty}^{\infty} \delta(t-2n))$$

and the Fourier transform of $\sum_{n=-\infty}^{\infty} \delta(t-2n)$ is $\pi \sum_{k=-\infty}^{\infty} \delta(\omega-k\pi)$, the Fourier transform of $\sum_{n=-\infty}^{\infty} \Lambda(t-2n)$ is $\pi \sum_{k=-\infty}^{\infty} \mathrm{sinc}^2(\frac{k}{2})\delta(\omega-k\pi)$. This can be simplified to

$$\pi\delta(\omega) + \sum_{k \text{ odd}} \frac{4}{\pi k^2} \delta(\omega - k\pi) .$$

Since the Fourier transform of $\cos(\omega_0 t)$ is $\pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$, we get

$$X(j\omega) = \frac{\pi}{2} \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right] + \sum_{k \text{ odd}} \frac{2}{\pi k^2} \left[\delta(\omega - k\pi - \omega_0) + \delta(\omega - k\pi + \omega_0) \right] .$$

4. (10 points) Let x[n] be a periodic sequence with period N. Assume N=3K for some integer K. Let a_k denote the discrete time Fourier series coefficients of x[n]. If $a_k=0$ when k is not a multiple of 3, show that x[n] must also be periodic with period K.

Solution: By the definition of the discrete time Fourier series coefficients, we have

$$a_k = \frac{1}{N} \sum_{n \in \langle N \rangle} x[n] e^{-jk\frac{2\pi}{N}n} .$$

Also,

$$x[n] = \sum_{k \in \langle N \rangle} a_k e^{jk\frac{2\pi}{N}n} .$$

Now consider x[n+K]. We have

$$x[n+K] = \sum_{k \in } a_k e^{jk\frac{2\pi}{N}(n+K)}$$

$$= \sum_{k \in } a_k e^{jk\frac{2\pi}{N}n} e^{jk\frac{2\pi}{3}}$$

$$\stackrel{(a)}{=} \sum_{k=3l \in } a_k e^{jk\frac{2\pi}{N}n} e^{jk\frac{2\pi}{3}}$$

$$= \sum_{k=3l \in } a_k e^{jk\frac{2\pi}{N}n}$$

$$\stackrel{(b)}{=} \sum_{k \in } a_k e^{jk\frac{2\pi}{N}n}$$

$$= x[n]$$

Here step (a) and step(b) use the given property that $a_k = 0$ unless k is a multiple of 3. We have thus shown that x[n] is also periodic with period K.

5. (5 + 5 points) Consider the causal linear time-invariant system whose input and output are related by the difference equation

$$y[n] + \frac{1}{3}y[n-1] = x[n] + x[n-2] - 3x[n-5]$$
.

- (a) Find the transfer function of the system.
- (b) Find the output of this system for the input

$$x[n] = (-1)^n$$
 for all n .

Solution:

(a) The corresponding discrete time Fourier transform equation is

$$(1 + \frac{1}{3}e^{-j\omega})Y(e^{j\omega}) = (1 + e^{-2j\omega} - 3e^{-5j\omega})X(e^{j\omega}).$$

This yields the transfer function of the system as

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{1 + e^{-2j\omega} - 3e^{-5j\omega}}{1 + \frac{1}{3}e^{-j\omega}}$$
.

(b) The input given is the discrete time pure tone

$$x[n] = e^{j\pi n} .$$

Substituting $\omega = \pi$ in the transfer function, we see the corresponding output must be

$$y[n] = H(e^{j\pi})x[n] = \frac{1 + e^{-2j\pi} - 3e^{-5j\pi}}{1 + \frac{1}{3}e^{-j\pi}}e^{j\pi n} = \frac{5}{2/3}(-1)^n = \frac{15}{2}(-1)^n ,$$

for all n.

6. (5 + 5 + 5 points) Consider the continuous time system whose output y(t) for the input x(t) is given by

$$y(t) = x(t - (\int_{t}^{t+1} x(u)du)^{2}).$$

Is it:

- (a) linear?
- (b) causal?
- (c) BIBO stable?

In each case explain your answers briefly. There should be no ambiguity about which part of the problem you are answering. A correct answer with an incorrect explanation will get at most 2 points.

Solution

(a) No, the system is not linear. The input $x_1(t) = 1$ has corresponding output $y_1(t) = 1$ and the input $x_2(t) = u(t)$ has corresponding output $y_2(t) = u(t-1)$. However, the input x(t) = 1 + u(t) has corresponding output

$$y(t) = 1 + u(t - \frac{1}{4}) \neq y_1(t) + y_2(t)$$
.

- (b) No, the system is not causal. If $x_1(t)=x_2(t)$ for $t< t_0$, the corresponding outputs $y_1(t)$ and $y_2(t)$ respectively need not satisfy $y_1(t)=y_2(t)$ for $t< t_0$. For example, consider $x_1(t)=|t|$ |u(-t) and $x_2(t)=|t|$ |u(-t)+u(t). We have $x_1(t)=x_2(t)$ for t<0. The respective corresponding outputs have $y_1(-\frac{1}{2})=x_1(-\frac{1}{2}-(\frac{1}{8})^2)=\frac{33}{64}$ and $y_1(-\frac{1}{2})=x_1(-\frac{1}{2}-(\frac{5}{8})^2)=\frac{57}{64}$. These are not equal.
- (c) Yes, the system is BIBO stable. For an input x(t) satisfying |x(t)| < B, we have, for all t, that

$$|y(t)| = |x(t - (\int_t^{t+1} x(u)du)^2)| < B.$$

7. (7 + 8 points) Let

$$x_1(t) = \begin{cases} 1 & \text{if } |t| \le \frac{1}{2} \\ 0 & \text{otherwise} \end{cases},$$

and

$$x_2(t) = \begin{cases} t & \text{if } 0 \le t \le 1\\ 0 & \text{otherwise} \end{cases}$$
.

- (a) Sketch $y(t) = x_1(t) * x_2(t)$. You DO NOT need to write any formulas. The shape of your sketch of y(t) should be accurate and the coordinates should be properly marked.
- (b) Let

$$z_1(t) = \begin{cases} 1 & \text{if } 0 \le t \le 1\\ 3 & \text{if } 1 < t \le 2\\ 0 & \text{otherwise} \end{cases},$$

and let

$$z_2(t) = \begin{cases} t & \text{if } 0 \le t \le 1\\ \frac{1}{3}t - \frac{1}{3} & \text{if } 1 < t \le 2\\ 0 & \text{otherwise} \end{cases}.$$

Let $w(t) = z_1(t) * z_2(t)$. Determine w(t) in terms of y(t) using basic properties of convolution. You need not determine w(t) explicitly: just write it in terms of y(t).

Solution:

(a)

$$y(t) = \begin{cases} \frac{1}{2}(t + \frac{1}{2})^2 & \text{if } -\frac{1}{2} \le t \le \frac{1}{2} \\ \frac{1}{2} - \frac{1}{2}(t - \frac{1}{2})^2 & \text{if } \frac{1}{2} \le t \le \frac{3}{2} \\ 0 & \text{otherwise} \end{cases}.$$

(b) We have
$$z_1(t)=x_1(t-\frac{1}{2})+3x_1(t-\frac{3}{2})$$
 and $z_2(t)=x_2(t)+\frac{1}{3}x_2(t-1)$, so
$$w(t)=y(t-\frac{1}{2})+\frac{10}{3}y(t-\frac{3}{2})+y(t-\frac{5}{2})\ .$$

8. (10 + 10 points) Consider the function

$$x(t) = \begin{cases} 1 & \text{if } -1 < t \le 0\\ 1+t & \text{if } 0 < t \le 1\\ 2-t & \text{if } 1 < t \le 2\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find the Fourier transform $X(j\omega)$ of the function x(t).
- (b) Let y(t) be the periodic function of period 8 defined by

$$y(t) = \begin{cases} x(t - \frac{3}{2}) & \text{if } 0 < t \le 4\\ -x(t + \frac{5}{2}) & \text{if } -4 < t \le 0 \end{cases}.$$

Find the Fourier series coefficients of y(t).

Solution:

(a) Let

$$x_1(t) = \begin{cases} 1 & \text{if } |t| \le 1 \\ 0 & \text{otherwise} \end{cases},$$

and let

$$x_2(t) = \begin{cases} 1 - |t| & \text{if } |t| \le 1 \\ 0 & \text{otherwise} \end{cases}.$$

We observe that $x(t) = x_1(t) + x_2(t-1)$. It follows that

$$X(j\omega) = 2\operatorname{sinc}(\frac{\omega}{\pi}) + e^{-j\omega}\operatorname{sinc}^2(\frac{\omega}{2\pi})$$
.

(b) Let

$$z(t) = \sum_{n=-\infty}^{\infty} (-1)^n \delta(t-4n) .$$

Then

$$y(t) = x(t - \frac{3}{2}) * z(t)$$
.

It follows that

$$Y(j\omega) = e^{-j\omega \frac{3}{2}} X(j\omega) Z(j\omega)$$
.

Writing

$$z(t) = \sum_{n=-\infty}^{\infty} \delta(t - 8n) - \sum_{n=-\infty}^{\infty} \delta(t - 8n - 4) ,$$

we see that

$$Z(j\omega) = \frac{2\pi}{8} (1 - e^{-j4\omega}) \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi}{8}k) .$$

Hence we have

$$Y(j\omega) = \frac{2\pi}{8} (1 - e^{-j4\omega}) e^{-j\omega \frac{3}{2}} X(j\omega) \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi}{8}k) .$$

Now, if y(t) has Fourier series coefficients a_k , we have

$$y(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\frac{2\pi}{8}t} ,$$

so that

$$Y(j\omega) = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - \frac{2\pi}{8}k)$$
.

Matching coefficients, we see that

$$a_k = \frac{1}{8} (1 - e^{-j4\frac{2\pi}{8}k}) e^{-j\frac{2\pi}{8}k\frac{3}{2}} X(j\frac{2\pi}{8}k) ,$$

where $X(j\omega)$ is as given above.