Score summary (leave blank):	Name: SOLUTIONS
P1:	Name:
P2:	SID:
P3:	
P4:	Name of student behind you:
P5:	
	Name of student in front of you:
Total:	

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Midterm 2

B. E. BOSER

EECS 42/100 FALL 2007

1

- Closed book, closed notes.
- No calculators.
- Leave packs and with books and cell phones in isle.
- Copy your answers into marked boxes on exam sheets.
- Simplify numerical and algebraic results as much as possible.
 Up to 10 points penalty for results that are not reasonably simplified.
- Mark your name and SID at the top of the exam and all extra sheets.
- Be kind to the graders and write legibly. No credit for illegible results.
- No credit for multiple differing answers for same problem.

The voltage source v(t) in the diagram above applies a voltage V_1 for $0 \le t \le T$ and V_2 for t > T. For t < 0 the voltage is zero and the inductor current is zero. Derive algebraic equations for the power $p_1(t)$ delivered by the source for $0 \le t \le T$ and the power $p_2(t)$ delivered for t > T.

$$p_1(t) = \frac{V_1^2 t}{L}$$

 $p_{2}(t) = \frac{1}{L} + \frac{1}{L}$ $V(t) = L \frac{dL}{dt}$ $\int_{0}^{t} \frac{V(r)}{L} dr = L(t)$ For $0 \leq t \leq T$ $V(t) = V_{1}$ $L(t) = \frac{V_{1} t}{L}$ For $t \geq V_{1} = \frac{1}{L}$ $V(t) = \frac{V_{2}}{L}$ $V_{1} = \frac{V_{2}}{L}$ $V_{1} = \frac{V_{2}}{L}$ $V_{2} = \frac{V_{2}}{L}$ $V_{1} = \frac{V_{2}}{L}$ $V_{1} = \frac{V_{2}}{L}$ $V_{2} = \frac{V_{2}}{L}$ $V_{1} = \frac{V_{2}}{L}$ $V_{1} = \frac{V_{2}}{L}$ $V_{1} = \frac{V_{2}}{L}$ $V_{1} = \frac{V_{2}}{L}$ $V_{2} = \frac{V_{2}}{L}$ $V_{1} = \frac{V_{2}}{L}$ $V_{1} = \frac{V_{2}}{L}$ $V_{2} = \frac{V_{2}}{L}$ $V_{1} = \frac{V_{2}}{L}$ $V_{1} = \frac{V_{1}}{L}$ $V_{1} = \frac{V_{1}}{L}$

Problem 2 [20 points]

In the circuit shown above the switch is in position (a) for t < 0 and in position (b) for $t \ge 0$. Find an algebraic expression for $v_x(t)$ for $t \ge 0$.

$$v_x(t) = -R \log e^{-tR/L}$$

$$t \neq 0$$

 $V_X = -RIL$, $V_X = L \frac{dIL}{dL}$
 $I_L = Forn Ac^{-t/T}$ with $A = I_0$, $T = Y_R$
 $I_L = I_0 e$
 $V_X = -RI_0 e$

Find an algebraic equation for the imaginary part of $Z_{in}(j\omega)$.

$$Im\{Z_{in}\} = \frac{-\omega R_2^2 C_2}{1 + \omega^2 R_2^2 C_2^2}$$

$$Z_{1n} = R_1 + \frac{R_2}{R_2} \frac{1}{2c_2}$$

= $R_1 + \frac{R_2}{R_2} \frac{2c_2}{2c_2} = R_1 + \frac{\frac{R_2}{sc_2}}{\frac{R_2}{2c_2}}$

12 18-2

$$= R_{1} + \frac{R_{2}}{1 + sR_{2}C_{2}}$$

$$= R_{1} + \frac{R_{2}}{1 + sR_{2}C_{2}} \cdot \frac{1 - sR_{2}C_{2}}{1 - sR_{2}C_{2}}$$

$$= R_{1} + \frac{R_{2} - sR_{2}^{2}C_{2}}{1 + \omega^{2}R_{2}^{2}C_{2}^{2}} = R_{1} + \frac{R_{2} - j\omega R_{2}^{2}C_{2}}{1 + \omega^{2}R_{2}^{2}C_{2}^{2}}$$

$$Im(Z_{m}) = \frac{-\omega R_{2}^{2}C_{2}}{1 + \omega^{2}R_{2}^{2}C_{2}^{2}}$$

272612

6

Problem 4 [20 points]

Derive an equation for the transfer function $H(j\omega) = \frac{V_o(j\omega)}{V_i(j\omega)}$.

$$H(j\omega) = - \frac{1+j\omega R_i C_i}{j\omega R_i C_2}$$

V-=V+=0

KCL @ V_ CUTTRED ENTERIOUS THE NODE $\frac{V_{1}}{R_{1}} + V_{1} \cdot SC_{1} + V_{0} \cdot SC_{2} = 0$ $V_{1} \left(\frac{1}{R_{1}} + SC_{1}\right) + V_{0} \cdot SC_{2} = 0$ $-V_{1} \left(\frac{1 + SR_{1}C_{1}}{R_{1}}\right) = V_{0} - SC_{2}$ $H(S) = \frac{V_{0}}{V_{1}} = -\frac{1 + SR_{1}C_{1}}{SR_{1}C_{2}}$ $H(S) = -\frac{1 + SR_{1}C_{1}}{SR_{1}C_{2}}$

7

Problem 5 [20 points]

Draw the Bode plot (magnitude and phase) of the following transfer function:

for $K = \frac{1}{1krad/s}$ and $p_1 = -10krad/s$ in the semilog paper provided below. Mark the axes (units and tick values).

