UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

EECS 130 Fall 2006 Professor Ali Javey

Midterm I

Name: Solutions

- 1. Closed book. One sheet of notes is allowed.
- 2. Show all your work in order to receive partial credit.
- 3. Include correct units when appropriate.
- 4. Make sure everything is on the exam papers. Work on additional papers will *NOT* be accepted.
- 5. There are a total of 10 pages of this exam including this page. Make sure you have them all.

Problem 1	30
Problem 2	15 & 5 extra credit
Problem 3	28
Problem 4	27
Total	100

Physical Constants

Electronic charge	q	1.602×10 ⁻¹⁹ C
Permittivity of vacuum	\mathcal{E}_0	$8.845 \times 10^{-14} \mathrm{F cm^{-1}}$
Relative permittivity of silicon	$\varepsilon_{\rm Si}/\varepsilon_0$	11.8
Boltzmann's constant	k	$8.617 \text{ x } 10^{-5} \text{ eV/ K or}$
		1.38×10 ⁻²³ J K ⁻¹
Thermal voltage at $T = 300$ K	kT/q	0.026 V
Effective density of states	N _c	$2.8 \times 10^{19} \text{ cm}^{-3}$
Effective density of states	N_v	$1.04 \text{ x } 10^{19} \text{ cm}^{-3}$
Silicon Band Gap	E _G	1.12 eV
Intrinsic Carrier Concentration in Si at 300K	n _i	10^{10} cm^{-3}
ALL DA THE E V VAA		

1. Carriers Concentrations [30 pts]

This problem concerns a specimen of gallium arsenide, GaAs, which has 2×10^{17} cm⁻³ donors and an unknown number of acceptors. A measurement is made on the specimen and it is found that it is p-type with an equilibrium hole concentration, p_o, of 5×10^{17} cm⁻³.

At room temperature in GaAs, the intrinsic carrier concentration, n_i , is 10^7 cm⁻³, the hole mobility, μ_h , is 300 cm²/V-s, and the electron mobility, μ_e , is 4000 cm²/V-s. The minority carrier lifetime, t_{min} , is 10^{-9} s.

a) [6 pts] What is the net acceptor concentration, $N_A (= N_a - N_d)$, in this sample, and what is the total acceptor concentration, N_a ?

$$P_{0} = \frac{N_{a} - N_{d}}{2} + \left(\left(\frac{N_{a} \cdot N_{d}}{2} \right)^{2} + h^{2} \right)^{1} \qquad N_{A} = \frac{5 \times 10^{17} \text{ cm}^{-3}}{N_{A}} \\ \left(\frac{N_{a} \cdot N_{d}}{2} \right)^{2} \gg h^{2} \Rightarrow p_{0} = \frac{N_{a} \cdot N_{d}}{2} + \frac{N_{0} - N_{d}}{2} = N_{a} - N_{d} \Rightarrow N_{A} = p_{0} \\ N_{a} = N_{A} + N_{d} = -7 \times 10^{17} \text{ cm}^{-3} \qquad N_{a} = \frac{-7 \times 10^{17} \text{ cm}^{-3}}{N_{a}}$$

b) [6 pts] What is the equilibrium electron concentration, n_o, in this sample at room temperature?

$$N_{0} \cdot P_{0} = N_{1}^{2}$$

$$N_{0} = \frac{H_{1}^{2}}{P_{0}} = \frac{(10^{7} \text{ cm}^{-3})^{2}}{5 \times 10^{17} \text{ cm}^{-3}} = 2 \times 10^{-4} \text{ cm}^{-3} \text{ m}_{0} = 2 \times 10^{-4} \text{ cm}^{-3}$$

c) [6 pts] Calculate $E_F - E_i$ in this sample at room temperature.

$$P_{0} = N_{i} e^{\frac{E_{i} - E_{F}}{K_{T}}}$$

$$\frac{P_{0}}{n_{i}} = e^{-\frac{(E_{F} - E_{i})}{K_{T}}}$$

$$E_{F} - E_{i} = -KT \ln \frac{P_{0}}{n_{i}} = -26 \text{ meV} \ln \frac{P_{0}}{k_{i}} = -\frac{0.64}{e^{V}} \text{ eV}$$

$$= -60 \text{ meV} \log \frac{5 \times 10^{17} \text{ cm}^{3}}{10^{7} \text{ gm}^{2}} = -60 \text{ meV} (10 + \log 5) = -642 \text{ meV}$$

$$3$$

d) [6 pts] What is the electrical conductivity, σ_0 , of this sample in thermal equilibrium at room temperature?

$$\overline{U_{0}} = (g_{0} \mu_{x} n_{0} + g_{0} \mu_{p} p_{0}) = g_{\mu p} p_{0} = 1.6 \times 10^{-14} \cdot 300 \frac{cm^{2}}{V_{0}} \cdot 5 \times 10^{17} cm^{3} \\
 = 24 \frac{s}{cm}$$

$$\overline{U_{0}} = \frac{24}{5} \frac{s}{cm}$$

e) [6 pts] This sample is illuminated by a steady state light which generates hole-electron pairs uniformly throughout its bulk, and the conductivity of the sample is found to increase by 1% (that is, to 1.01 σ_0). What are the excess hole and electron concentrations, Δp and Δn , in the illuminated sample, assuming that the illumination has been on for a long time?

$$\Delta n = \Delta p$$

$$1.01 \sigma_{0} = g \mu_{n} (n_{0} + \Delta n) + g \mu_{p} (p_{0} + \Delta p) = \sigma_{0} + g \mu_{n} \Delta n + g \mu_{p} \Delta p$$

$$0.01 \sigma_{0} = g \mu_{n} \Delta p + g \mu_{p} \Delta p$$

$$\Delta p = \Delta n = \frac{0.01 \sigma_{0}}{g \mu_{n} + g \mu_{p}}$$

$$\Delta p = \frac{3.488 \times 10^{14} \text{ cm}^{-3}}{16 \times 10^{-19} \text{ (} (320 \frac{m^{2}}{M} + 4000 \frac{m^{2}}{M_{p}}))} = \sqrt{3.488 \times 10^{14} \text{ cm}^{-3}}$$

2. Temperature Dependence of Carrier Concentrations and Mobility [15 pts]

A silicon wafer is moderately doped with arsenic. The plots in parts (a)-(c) show the relationship between $\ln(n)$ and 1/T for this Si wafer, where n is the electron density in the conduction band and T is the temperature. In each case, clearly mark any pertinent shift in the curve and/or the slopes of the two non-flat regions as various properties of the semiconductor is changed.

b) [5 pts] Draw a second curve that would correspond to using a Ge ($E_g \sim 0.67$) wafer with the same dopant density instead of a Si ($E_{g}\sim 1.1$) wafer. Assume the same $(E_{\rm D} - E_{\rm C}).$

- c) [5 pts] Draw a second curve that would correspond to another Si wafer, but doped with a different donor such that $(E_D - E_C)_{NEW_DONER} = 4 \times ((E_D - E_C)_{As}, where <math>E_D$ is the donor energy level. $Probability = adcrev = side is filled is ((E_b) = \frac{1}{1 + e^{E_0 - E_T}}$ $Urder Boltquian appiex. f(E_b) \approx exp(E_F - E_b)/kT)$ $after secre derivation: nd exp(E_F - E_b)/kT)$ $after secre derivation: nd exp(E_F - E_c/kT)$ $Stronghl = 1n(n) \ X = \frac{5 - E_c}{kT}$ deeper donor levels frequendo<math>freeze ad a higher T August L, slope1/T
- d) [5pts extra credit] Draw a second curves that would correspond to a heavily doped Si wafer. Hint: when doping density is high, the impurity energy level splits into a band of available states due to Pauli exclusion principle. This impurity band crosses E_c.

3. Band Model [28 pts]

A silicon device maintained at 300 K is characterized by the following band diagram. Use the cited energy band diagram in answering parts (a)-(e)

(a) [8 pts] Sketch the electric field inside the semiconductor.

7

Yes. Exis constant and row tinvous. $\frac{dE_F}{dx} = 0$

(c) [5 pts] Is the semiconductor degenerate at any point? If so, specify one point where this is the case.

Yes. Degeneracy occurs when EF-EVK3KT This is clear by the case at x=L

(d) [5 pts] What is the electron current density (J_N) flowing at $x = x_1$?

By definition, under equilibrium Jn: O

(e) [5 pts] What is the kinetic energy of the hole shown in the diagram?

$$E_v - E_{HOLG} = \frac{E_S}{3}$$

4. [27 pts] Assume a Si PN junction with the following dopant density profiles for the two segments:

N	Р
$N_{\rm D} = 2 \times 10^{16} {\rm cm}^{-3}$	$N_{\rm A} = 1 \times 10^{17} {\rm cm}^{-3}$
$N_{\rm A} = 1 \times 10^{16} {\rm cm}^{-3}$	$N_{\rm D} = 1 \times 10^{13} {\rm cm}^{-3}$

a) [6 pts] Find V_{bi}.

$$V_{bi} = \frac{kT}{q} \ln \left(\frac{N_D - N_A}{N_f^2} \left(\frac{N_A - N_D}{N_f^2} \right) \right)$$
$$V_{bi} = \frac{0.768}{V_{bi}} V$$

 b) [7 pts] Draw a band diagram for the structure with a forward bias of V_A=0.5 V. Label V_A, V_{bi}, E_v, E_c, and Fermi (or quasi-Fermi) levels.

c) [4 pts] For part b, using arrows, indicate direction of I_{n,diff}, I_{p,drift}, I_n, and I_{total} (Redraw the band diagrams from b here).

M e diffusion => Indiff = hole douft -> (Pto N for find => Ipdruft d) [10 pts] So far, we have been assuming that there is no series resistance (and therefore, no potential drop) in the neutral P and N regions of our diodes. However, when lightly doped (~<5e16cm⁻³), the resistivity of the P and N type regions are often high, leading to series resistance or potential drop in the P and N regions under an applied voltage. Draw a band diagram for this PN junction in equilibrium and then under forward bias, this time including the effect of the series resistance (qualitatively) of the N segment. Hint: assume the series resistance is constant throughout the N segment. 支 VIY E que EF > Series Res potential down =>V/x) Find Bian EV