
EECS 120 Fall 2004

Midterm 2 Solutions

• The exam is for one hour and 50 minutes.

• The maximum score is 100 points. The maximum score for each part of each problem is
indicated.

• The exam is closed-book and closed-notes. Calculators, computing, and communication
devices are NOT permitted.

• Four double-sided sheets of notes are allowed. These should be legible to normal eyesight,
i.e. the lettering should not be excessively small.

• No form of collaboration between students is allowed.

1. (8 points) State whether the following are true or false. In each case, give a brief explana-
tion. A correct answer with a correct explanation gets 4 points. A correct answer without
a correct explanation gets 1 points. A wrong answer gets 0 points.

(a) If two signals x(t) and y(t) have the same unilateral Laplace transform, then the
signals are identical.
Solution : False. The unilateral Laplace transform of a signal x(t) is defined as

X (s) =
∫ ∞

0−
x(t)e−stdt .

Thus, for example, any signal x(t) with x(t) = 0 for all t ≥ 0 will have X (s) = 0.

(b) Let the signal x1(t) have Laplace transform X1(s) with region of convergence R1,
and let the signal x2(t) have Laplace transform X2(s) with region of convergence R2.
Assume that R1∩R2 is not the empty set. Then the signal y(t) = x1(t)∗x2(t), which
is the convolution of x1(t) with x2(t), has Laplace transform Y (s) = X1(s)X2(s) with
region of convergence equal to R1 ∩R2.
Solution : False. In general all we can say is that the region of convergence of the
Laplace transform of y(t) contains R1 ∩ R2, but it can be larger. For an example,
consider X1(s) = 1

s+2 with ROC Re(s) > −2 and X2(s) = s+2
(s+1)2 with ROC Re(s) <

−1. Then y(t) = x1(t) ∗ x2(t) has Y (s) = 1
(s+1)2 with ROC Re(s) < −1.

2. (6 + 2 + 6 + 2 + 4 + 5 points) Consider the impulse train

p(t) =
∞∑

n=−∞
[δ(t− 3n∆) + δ(t− 3n∆−∆)− δ(t− 3n∆− 2∆)] .

Note carefully that every third impulse has sign opposite to that of the preceding two
impulses.



Let x(t) be a signal. We assume that x(t) is band limited to (−ωM , ωM ), i.e.

X(jω) = 0 , if | ω |≥ ωM ,

where X(jω) denotes the Fourier transform of x(t).

Let
xp(t) = x(t)p(t) .

Let H(jω) be given by

H(jω) =

{
A if −ωf < ω < ωf
0 otherwise .

Thus the filter with frequency response H(jω) is a low pass filter which passes only
frequencies in the range −ωf < ω < ωf , with amplification A in the pass band.

Let y(t) denote the output of this low pass filter when the input is xp(t).

(a) Let P (jω) denote the Fourier transform of p(t). Determine P (jω).

(b) Choose some X(jω) that is non-zero over (−ωM , ωM ) and has linear phase over
(−ωM , ωM ), with the phase being non-zero except at ω = 0. Sketch the magnitude
and phase plots for the X(jω) that you picked. Make sure to label all the important
frequency, magnitude, and phase coordinates.

(c) Let Xp(jω) denote the Fourier transform of xp(t). Sketch the magnitude and phase
plots for Xp(jω) corresponding to the X(jω) that you picked, assuming the appropri-
ate no-aliasing condition. Make sure to label all the important frequency, magnitude,
and phase coordinates.

(d) What is the appropriate no-aliasing condition in the preceding part of the problem
?

(e) Find the conditions on ωM , ∆, ωf , and A which ensure that y(t) = x(t) for all x(t)
that are band limited to (−ωM , ωM ).

(f) Is there a way to recover x(t) from xp(t) even when the no-aliasing condition of part
(d) does not hold ? Explain your answer.

Solution :

(a) Let ωs = 2π
3∆ . We have

P (jω) =
2π
3∆

∞∑
k=−∞

δ(ω − kωs) +
2π
3∆

e−jω∆
∞∑

k=−∞
δ(ω − kωs)−

2π
3∆

e−2jω∆
∞∑

k=−∞
δ(ω − kωs)

=
2π
3∆

∞∑
k=−∞

[
1 + e−jω∆ − e−2jω∆

]
δ(ω − kωs)

=
2π
3∆

∞∑
k=−∞

[
1 + e−jkωs∆ − e−2jkωs∆

]
δ(ω − kωs)



=
2π
3∆

∞∑
k=−∞

[
1 + e−jk

2π
3 − e−jk

4π
3

]
δ(ω − kωs)

=
∞∑

k=−∞
akδ(ω − kωs)

where

ak =


2π
3∆ if k is an integer multiple of 3

2π
3∆(1 + j) if k − 1 is an integer multiple of 3
2π
3∆(1− j) if k − 2 is an integer multiple of 3

(b) Choose some X(jω) that is non-zero over (−ωM , ωM ), zero elsewhere, and has linear
phase over (−ωM , ωM ), with the phase non-zero except at ω = 0.

(c)

Xp(jω) =
1

2π
[X(jω) ∗ P (jω)]

=
1

2π

∞∑
k=−∞

akX(j(ω − kωs))

A sketch of this is non-zero over regions of width 2ωM centered at the frequencies
kωs, k ∈ Z, with the regions non-overlapping iff 2ωM ≤ ωs. Note that the magnitude
is 1

3∆ times the magnitude of X(jω) and the phase is identical to that of X(jω) in
the regions centered at kωs for k a multiple of 3. The magnitude is

√
2 1

3∆ times
the magnitude of X(jω) and the phase is π

4 plus the phase of X(jω) in the regions
centered at kωs for k−1 a multiple of 3. The magnitude is

√
2 1

3∆ times the magnitude
of X(jω) and the phase is −π

4 plus the phase of X(jω) in the regions centered at
kωs for k − 2 a multiple of 3.

(d) The no-aliasing condition is 2ωM ≤ ωs, i.e.

∆ ≤ π

3ωM
.

(e) We need the no-aliasing condition to make sure that there is no loss of the spectral
shape of X(jω) when we go to Xp(jω). We need ωM ≤ ωf ≤ ωs−ωM to ensure that
the low pass filter H(jω) will only pick up the portion of the spectrum of Xp(jω)
that lies in the interval of width 2ωM centered at ω = 0. We need A = 2π

a0
= 3∆ to

ensure that the output of the filter is x(t) rather than just a scaled version of x(t).
(f) Some thought reveals that it is only necessary to have

∆ ≤ π

ωM

in order to be able to recover x(t) from xp(t). This is because it is possible in
principle to recover the samples x(n∆), n ∈ Z, from xp(t), so xp(t) contains all the
information we would have got from periodic sampling of x(t) with period ∆. In fact
it contains precisely this information. The Nyquist sampling criterion tells us that
as long as 2ωM ≤ 2π

∆ , we can recover the signal x(t) from these samples, hence from
xp(t).



3. (12 points)

Let x(t) be a low pass signal that is bandlimited to (−ωM , ωM ), i.e. if X(jω) denotes the
Fourier transform of x(t) then we have

X(jω) = 0 if | ω |≥ ωM .

Let y(t) = Acx(t) cos(ωct) denote the DSB-SC signal resulting from amplitude modulation
of x(t) onto the carrier Ac cos(ωct). Assume that ωc >> ωM .

Let p(t) denote the periodic signal with period Tc = 2π
ωc

given by

p(t) =

{
1 if | t− nTc |≤ Tc

4 for some n ∈ Z
0 otherwise

Let z(t) = y(t)p(t). The signal z(t) is passed through an ideal low pass filter H(jω) with
cutoff frequency ωM , i.e.

H(jω) =

{
1 if | ω |≤ ωM
0 otherwise .

Let the output of this filter be denoted w(t).

Determine w(t).

Solution :

p(t) is periodic with period Tc = 2π
ωc

. We may therefore write a Fourier series expansion
for it :

p(t) =
∞∑

k=−∞
ake

jkωct ,

where

a0 =
1
2

and

ak =
1
2

sinc(
k

2
) if k 6= 0 .

We now write

z(t) = y(t)p(t) = Acx(t) cos(ωct)

 ∞∑
k=−∞

ake
jkωct

 .

We write
cos(ωct) =

1
2

[
ejωct + e−jωct

]
.

Since z(t) is to be sent through the ideal low pass filter H(jω), and since we assumed
that ωM << ωc, to produce w(t), we see that

w(t) = Acx(t)
[

1
2
a1 +

1
2
a−1

]
.

Finally, observing that a1 = a−1 = 1
π , we have

w(t) =
Ac
π
x(t) .



4. (2 + 6 + 6 points)

Let x[n] be a discrete time signal whose discrete time Fourier transform (DTFT) X(ejω)
is bandlimited to (− π

10 ,
π
10), i.e.

X(ejω) = 0 if | ω |≤ π and | ω |≥ π
10 .

Recall that

X(ejω) =
∞∑

n=−∞
x[n]e−jωn

is a periodic function of ω with period 2π, which is why the extra condition that | ω |≤ π
is needed in the notion of “bandlimited”.

Let z[n] be created from x[n] by dropping all terms for n an integer multiple of 4, i.e.

z[n] =

{
0 if n is a multiple of 4
x[n] otherwise .

You can think of z[n] as x[n]− y[n], where y[n] is the discrete time sampling of x[n] with
period 4, if you like.

Let w[n] denote the up-sampled version of z[n] with up-sampling factor 3, i.e. to get w[n]
we first create

v[n] =

{
z[n3 ] if n is a multiple of 3

0 otherwise
,

and then pass v[n] through an ideal discrete time low pass filter that is bandlimited to
(−π

3 ,
π
3 ).

For the following, pick some X(ejω) that is periodic with period 2π, non-zero over
(− π

10 ,
π
10), and has linear phase over (− π

10 ,
π
10) which is non-zero except at ω = 0.

(a) Sketch the magnitude and phase plots for the X(ejω) you picked. Make sure to label
all the important frequency, magnitude, and phase coordinates.

(b) Let Z(ejω) denote the DTFT of z[n]. Sketch the magnitude and phase plots of Z(ejω)
corresponding to the X(ejω) that you picked. Make sure to label all the important
frequency, magnitude, and phase coordinates.

(c) Let W (ejω) denote the DTFT of w[n]. Sketch the magnitude and phase plots of
W (ejω) corresponding to the X(ejω) that you picked. Make sure to label all the
important frequency, magnitude, and phase coordinates.

Solution :

(a) Pick some X(ejω) that is periodic with period 2π, non-zero over (− π
10 ,

π
10), and has

linear phase over (− π
10 ,

π
10) which is non-zero except at ω = 0.

(b) Let

p[n] =
∞∑

k=−∞
δ[n− 4k] .



This has DTFT :

P (ejω) =
2π
4

∞∑
k=−∞

δ(ω − kωs) ,

where ωs = 2π
4 = π

2 .
Let the periodic sampling of x[n] with period 4 be denoted by y[n]. Then

y[n] = x[n]p[n] ,

so y[n] has DTFT Y (ejω) given by :

Y (ejω) =
1

2π
X(ejω) ∗2π P (ejω) ,

where ∗2π denotes circular convolution. It follows that

Y (ejω) =
1
4

3∑
k=0

X(ej(ω−k
π
2 )) .

Since
Z(ejω) = X(ejω)− Y (ejω) ,

a sketch of Z(ejω) is periodic with period 2π, and is non-zero in intervals of length 2π
10

centered at the points k π2 , k ∈ Z. The magnitude in the intervals centered around
k2π, k ∈ Z, is 3

4 the magnitude of X(ejω), and the phase is the same as that of
X(ejω). The magnitude in the intervals centered around k π2 , k ∈ Z, k not a multiple
of 4, is 1

4 the magnitude of X(ejω), and the phase is π plus that of X(ejω).

(c) Let V (ejω) denote the DTFT of v[n]. Then

V (ejω) = Z(ej3ω) .

V (ejω) is nonzero in intervals of length 2π
30 centered at k π6 , k ∈ Z. Its magnitude

and phase plots look like a compressed version (by a factor of 3 on the frequency
axis) of the corresponding plots of Z(ejω). Finally, the plots for W (ejω) are got from
those of V (ejω) be erasing everything that does not lie in the intervals of length 2π

3
centered at the frequencies k2π, k ∈ Z.

5. (10 points)

Let x[n] be a discrete time signal. Assume that its discrete time Fourier transform (DTFT)
X(ejω), which is a periodic function with period 2π, is band limited to (−ωM , ωM ), i.e.
assume that

X(ejω) = 0 , if ωM <| ω |≤ π .

The extra condition that | ω |≤ π is needed in the notion of “bandlimited” because
X(ejω), is periodic with period 2π. We assume, of course, that ωM < π.

Assume that x[n] 6= 0 for all n.

Let y[n] be a discrete time signal with DTFT Y (ejω). Assume that this is also bandlimited
to (−ωM , ωM ).



Let a > 1 be a real number such that aωM < π, and let

z[n] = cos(a ωMn) + y[n] .

Let v[n] = x[n]z[n]. The signal v[n] is periodically sampled with period N . Here N ≥ 1
is some integer.

For what values of a and N is it possible to recover both x[n] and y[n] from the samples
v[nN ], n ∈ Z ?

Solution :

Let Z(ejω) denote the DTFT of z[n]. Then Z(ejω) is periodic with period 2π, and

Z(ejω) =
∞∑

l=−∞
[πδ(ω − aωM − 2πl) + πδ(ω + aωM − 2πl)] + Y (ejω) ,

where Y (ejω) denotes the DTFT of y[n]. Now, V (ejω), the DTFT of v[n], is the circular
convolution of X(ejω), the DTFT of x[n], with Z(ejω).

We see that if we want to have no overlap between the terms coming from the circular
convolution of X(ejω) and Y (ejω) and the terms coming from the circular convolution of
X(ejω) with

∑∞
l=−∞ [πδ(ω − aωM − 2πl) + πδ(ω + aωM − 2πl)], we must have

aωM − ωM ≥ 2ωM , i. e.a ≥ 3 .

If we want to have no aliasing between the terms coming from the circular convolution of
X(ejω) with

∑∞
l=−∞ [πδ(ω − aωM − 2πl) + πδ(ω + aωM − 2πl)], we must have

aωM + ωM ≤ π .

Further, in order to be able to recover V (ejω) from the samples v[nN ], n ∈ Z we must
have

aωM + ωM ≤
π

N
.

Thus, the conditions
a ≥ 3 and N(a+ 1) ≤ π

ωM

would allow us to recover both x[n] and y[n] from the samples v[nN ], n ∈ Z, because
we could first recover V (ejω) and from that recover the circular convolution of X(ejω)
with

∑∞
l=−∞ [πδ(ω − aωM − 2πl) + πδ(ω + aωM − 2πl)], which tells us what X(ejω) is,

and hence what the sequence x[n] is. Also, from V (ejω) we can recover the circular
convolution of X(ejω) and Y (ejω), which tells us what the sequence x[n]y[n] is, and since
we now know what the sequence x[n] is, and because x[n] 6= 0 for all n, we can find out
what the sequence y[n] is.

It is possible to be more clever than this. It is not necessary to have no overlap between the
terms coming from the circular convolution of X(ejω) and Y (ejω) and the terms coming
from the circular convolution ofX(ejω) with

∑∞
l=−∞ [πδ(ω − aωM − 2πl) + πδ(ω + aωM − 2πl)].

Indeed, the conditions
a ≥ 2 and N(a+ 1) ≤ π

ωM



are also okay, because then we could first recover V (ejω) as before, then recover X(ejω)
from the upper sidebands of the terms coming from the circular convolution of X(ejω) with∑∞
l=−∞ [πδ(ω − aωM − 2πl) + πδ(ω + aωM − 2πl)], which tells us what the sequence x[n]

is, use this knowledge to compensate for the overlap with the terms coming from the
circular convolution of X(ejω) and Y (ejω), which then tells us what the sequence x[n]y[n]
is, and finally tells us what the sequence y[n] is, as before.

6. (2 + 2 + 9 points)

A causal LTI system has system function

H(s) =
s− 4

s2 + 5s+ 4
.

(a) Determine the region of convergence of the system function.

(b) Is the system stable ? Why ?

(c) Determine the output of the system when the input is

x(t) = e−2|t| .

Solution :

(a) The poles of the system function are at −4 and −1, and it has a finite zero at 4.
Since the system is causal, the ROC of the system function is Re(s) > −1.

(b) Since the poles of the system function are strictly in the left half plane, and because
we are given that the system is causal, it is stable.

(c) The input can be written as

x(t) = e−2tu(t) + e2tu(−t) .

The Laplace transform of the input is

X(s) =
1

s+ 2
− 1
s− 2

=
−4

s2 − 4
, − 2 < Re(s) < 2 .

Let y(t) denote the output of the system when the input is x(t). The Laplace
transform of the output, Y (s) is then −4(s−4)

(s2−4)(s2+5s+4)
with ROC containing −1 <

Re(s) < 2. Since the poles of this rational function are at −4, −2, −1, and 2, the
ROC must be −1 < Re(s) < 2.
We use the technique of partial fraction expansion to write

Y (s) =
a

s+ 4
+

b

s+ 2
+

c

s+ 1
+

d

s− 2
.



The coefficients can be found as

a = (s+ 4)Y (s) |s=−4=
−4(−4− 4)

(16− 4)(−4 + 1)
= −8

9

b = (s+ 2)Y (s) |s=−2=
−4(−2− 4)

(−2− 2)(4− 10 + 4)
= 3

c = (s+ 1)Y (s) |s=−1=
−4(−1− 4)

(1− 4)(−1 + 4)
= −20

9

c = (s− 2)Y (s) |s=2=
−4(2− 4)

(2 + 2)(4 + 10 + 4)
=

1
9
.

From this, based on the ROC, we conclude that

y(t) = −8
9
e−4tu(t) + 3e−2tu(t)− 20

9
e−tu(t)− 1

9
e2tu(−t) .

7. (18 points)

Each of the plots A, B, C, and D on the next two pages is a pair, giving | H(jω) | as
a function of ω > 0 in radians on a log-log plot and 6 H(jω) in degrees as a function of
ω > 0 in radians on a linear-log plot. These plots correspond, in some unknown order,
to the frequency responses of the causal stable LTI systems with the following system
functions (the finite poles and zeros of these system functions are also explicitly given for
convenience).

Number System function poles zeros

1. 1
s2+2s+5

−1 + j2, −1− j2 none

2. s2+4s+8
s2+2s+5

−1 + j2, −1− j2 −2 + j2, −2− j2

3. s2−8s+20
s2+2s+5

−1 + j2, −1− j2 4 + j2, 4− j2

4. s2+8s+20
s2+2s+5

−1 + j2, −1− j2 −4 + j2, −4− j2

Match up the system functions with the corresponding plots. Every correct answer gets
3 points, and every wrong answer gets -1 points. Also, explain your reasoning for why
you matched the system functions to the plots the way you did. 6 points are allocated to
evaluate your reasoning.

Note : Even though negative points will be given for wrong answers, the lowest score
possible on this problem as a whole will be zero points.

Solution :



1. ⇔ Plot D
2. ⇔ Plot A
3. ⇔ Plot C
4. ⇔ Plot B

The only plot which has phase going to −180o as ω → ∞ is plot D, so this must be
the one corresponding to the system function 1 ( notice that each zero contributes an
angle of +90o and each pole contributes an angle of −90o as ω →∞). Of the remaining
three plots, the one with the least magnitude at ω = 0 is plot A, so this must be the one
corresponding to system function 2 (notice that of these three system functions the zeros
are closest to the imaginary axis in system function 2). The remaining two plots have
identical magnitude functions. However, for positive frequencies, the absolute value of the
phase of the system function 4 can never exceed −180o, as it does in plot C (because each
zero contributes less phase than the corresponding pole removes and each pole removes
at most a phase of 90o) so system function 4 must correspond to plot B, which leaves
system function 3 corresponding to plot C.



Plot  A

Plot B



Plot C

Plot D


