Name:	
SID:	
UID:	

Problem 1	Points of 25
Problem 2	Points of 25
Problem 3	Points of 25
Problem 4	Points of 25

- Score _____%
- Closed book, closed notes
- One pocket calculator permitted (no PDAs, laptops, cell phones, or other electronic devices)
- Show derivations to get partial credit in case of numerical errors
- Cross out incorrect attempts (no partial credit for ambiguous derivations)
- Write results into boxes
- Take off hats or caps and leave backpacks and electronic devices in isle

Password:

1. In the circuit below i_D and R_D model a photodiode in a fiberoptic receiver. Find R_1 and v_{os} such that

$$v_o = R_x i_D + v_b$$

Parameter: $R_D = k\Omega$, $R_x = k\Omega$, $v_b = mV$.

(1)

2. Find the value of I_1 and R_4 such that the power dissipated in R_2 is $P_{R_2} = mW$ and $v_5 = V$. Parameter: $I_2 = mA$, $V_1 = V$, $R_1 = k\Omega$, $R_2 = k\Omega$, $R_3 = k\Omega$, $R_5 = k\Omega$.

3. Find component values such that all three circuits shown behave identically. Parameter: $I_1 = -mA$, $V_1 = -V$, $R_1 = -k\Omega$ and $R_2 = -k\Omega$.

4. Precision opamps come particularly close to the specifications of "ideal" amplifiers, but usually cannot drive low resistance loads R_L . In the circuit below, the "precision opamp" sets v_o , while the "power opamp" delivers the load current i_L . Determine R_1 such that $i_o = 0$. Hint: this condition is met when $i_L + i_x = 0$.

