
CS 61A Structure and Interpretation of Computer Programs
Fall 2024 Midterm 2 Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Exam generated for <EMAILADDRESS> 3

1. (5.0 points) What Would Python Display?

Assume the following code has been executed. The Tree class appears on the midterm 2 study guide (page 2,
left side).

scare = Tree(0, [Tree(4), Tree(5, [Tree(10)]), Tree(2)])
crow = Tree(9, [scare, Tree(7, [Tree(6)])])

def climb(t, f):
if t.is_leaf():

return [t.label]
return [t.label] + climb(max(t.branches, key=f), f)

def run(t):
if t.is_leaf():

return t.label
else:

return max(map(run, t.branches))

def hide(t):
return t.label

jump = {(2 * x - 1): x for x in range(50)}

Write the value of each expression below or Error if an error occurs.

(a) (1.0 pt) crow.branches[0].label

0

(b) (1.0 pt) [hide(b) for b in scare.branches]

[4, 5, 2]

(c) (1.0 pt) climb(crow, hide)

[9, 7, 6]

(d) (1.0 pt) climb(crow, run)

[9, 0, 5, 10]

(e) (1.0 pt) jump[jump[13]]

4

Exam generated for <EMAILADDRESS> 4

2. (5.0 points) Pizza by the Slice

Answer the questions about the code below. You are encouraged to draw an environment diagram, but the
diagram itself will not be scored.

(a) (3.0 pt) What would be printed by the expression print(slice_up(t)) on line 11?

[[1], [3, 4], [2]]

(b) (1.0 pt) What would be printed by the expression print(t) on line 12?

 [1]

[2]

[3]

[1, 4]

[2, 4]

[3, 4]

[1, 4, 5]

[2, 4, 5]

[3, 4, 5]

(c) (1.0 pt) What is the order of growth of the time it takes to evaluate list(list(q)) for a list of numbers
q in terms of the length of q. Assume that creating a list with one element takes constant time, and
making a copy of a list takes linear time in the length of the list.

exponential

quadratic

 linear

logarithmic

constant

Exam generated for <EMAILADDRESS> 5

3. (6.0 points) CS 61A Software Store

A Store instance has a list of branches, and each branch is also a Store instance, forming a tree of stores.
Each Store instance also has a list of programs (strings) called its inventory. For a Store:

• The copies(s) method returns the number of times s appears in the inventories of all nodes in its tree of
stores.

• The add_to(k) method returns a function that takes a string and appends it to the inventory of its kth
branch. Assume that k is non-negative and less than the number of branches.

class Store:
"""A Store selling programs has branches forming a tree of Stores.
>>> north, south = Store(['Cats', 'Ants']), Store(['Cats', 'Cats', 'Hog'])
>>> east, west = Store(['Cats', 'Hog', 'Hog'], [north, south]), Store(['Cats', 'Cats', 'Ants'])
>>> main = Store(['Ants', 'Ants', 'Hog'], [east, west])
>>> east.copies('Cats') # 1 in north, 2 in south, 1 in east
4
>>> main.copies('Ants') # 2 in main, 1 in north, 1 in west
4
>>> main.add_to(1)('Ants') # Add 'Ants' to the inventory of west, the branch of main at index 1
>>> [main.copies('Ants'), west.copies('Ants')] # increased copies in both main and west
[5, 2]
"""
def __init__(self, programs, branches=[]):

assert all([isinstance(b, Store) for b in branches])
self.branches = branches
self.inventory = programs

def copies(self, s):
"""Return the number of times s (string) appears in all inventories of this tree."""
return sum([_______ for p in self.inventory if p == s] + [_______ for b in self.branches])

(a) (b)

def add_to(self, k):
"""Return a function that appends a string to the inventory of the branch at index k."""
return _______

(c)

(a) (1.0 pt) Fill in blank (a).

 1

p

len(p)

len(self.inventory)

(b) (2.0 pt) Fill in blank (b).

b.copies(s)

Exam generated for <EMAILADDRESS> 6

(c) (3.0 pt) Fill in blank (c).

self.branches[k].inventory.append

Exam generated for <EMAILADDRESS> 7

4. (18.0 points) Almost a Perfect Question

Definition. A proper divisor of an integer n is an integer d less than n that evenly divides n, and so n divided
by d has no remainder. A semiperfect number is a positive integer that is the sum of some (or all) of its proper
divisors. For example, 24 = 2 + 4 + 6 + 12 and so it is semiperfect. The sum of divisors cannot contain
repeated numbers.

(a) (6.0 points)

Implement semiperfect, which takes a positive integer n. It returns True if n is semiperfect and False
otherwise.

def semiperfect(n):
"""Return whether positive integer n is a sum of some (or all) of its proper divisors.
>>> [k for k in range(1, 40) if semiperfect(k)]
[6, 12, 18, 20, 24, 28, 30, 36]
"""
def f(s, d):

if _______:
(a)

return True
if d >= n:

return False
if _______ and f(_______, d + 1):

(b) (c)
return True

return _______
(d)

return f(n, 1)

i. (1.0 pt) Fill in blank (a).

n == 0

 s == 0

s == d

n == d

ii. (1.0 pt) Fill in blank (b).

 n % d == 0

s % d == 0

n % d > 0

s % d > 0

iii. (2.0 pt) Fill in blank (c).

s - d

iv. (2.0 pt) Fill in blank (d).

f(s, d + 1)

Exam generated for <EMAILADDRESS> 8

(b) (6.0 points)

Implement subsums, a generator function that takes a list of unique (no repeats) positive integers s and
a positive integer n. It yields all sublists of s that sum to n. A sublist of s is a list containing some of the
elements of s in order. The subsums function should not yield the same list twice. The lists may appear
in any order.

def subsums(s, n):
"""Yield all sublists of s that sum to n.
>>> list(subsums([1, 2, 3, 6, 9], 18))
[[1, 2, 6, 9], [3, 6, 9]]
>>> list(subsums([1, 2, 3, 4, 6], 16))
[[1, 2, 3, 4, 6]]
>>> list(subsums([1, 2, 3, 4, 6, 8, 12], 12))
[[1, 2, 3, 6], [1, 3, 8], [2, 4, 6], [4, 8], [12]]
"""
if s:

if _______:
(e)

yield [n]
for t in _______:

(f)
yield _______

(g)
yield from _______

(h)

i. (1.0 pt) Fill in blank (e).

n == s

 n == s[0]

n in s

[n] == s

ii. (3.0 pt) Fill in blank (f).

subsums(s[1:], n-s[0])

iii. (1.0 pt) Fill in blank (g).

s + t

[s] + t

s[1:] + t

 s[:1] + t

Exam generated for <EMAILADDRESS> 9

iv. (1.0 pt) Fill in blank (h).

subsums(s, n)

 subsums(s[1:], n)

subsums(s, n - 1)

subsums(s[1:], n - 1)

Exam generated for <EMAILADDRESS> 10

(c) (6.0 points)

Implement semisums, which takes a positive integer n. It returns a list of all lists of unique (no repeats)
proper divisors of n that sum to n. You may call semiperfect and subsums.

def semisums(n):
"""Return a list of all lists (with no repeats) of
proper divisors of n that sum to n.

>>> semisums(22) # 22 is not semiperfect, so there are no sums.
[]
>>> semisums(30) # 30 is semiperfect. It has three different sums.
[[1, 3, 5, 6, 15], [2, 3, 10, 15], [5, 10, 15]]
"""
return list(_______ ([k for k in range(1, n) if _______], _______))

(i) (j) (k)

i. (1.0 pt) Fill in blank (i).

map

filter

sorted

 subsums

semiperfect

ii. (1.0 pt) Fill in blank (j).

semiperfect(n)

semiperfect(k)

semiperfect(n) or semiperfect(k)

 n % k == 0

iii. (1.0 pt) Fill in blank (k).

n

iv. (3.0 pt) Fill in blank (l) of primitive_semiperfect, a function that takes a positive integer n. It
returns True if n is semiperfect and no smaller semiperfect number is a divisor of n. Your answer
should have two expressions separated by a comma.

def primitive_semiperfect(n):
"""Return whether n is semiperfect and has no semiperfect proper divisors.

>>> [k for k in range(1, 300) if primitive_semiperfect(k)]
[6, 20, 28, 88, 104, 272]
"""
return semiperfect(n) and not any(map(semiperfect, filter(_______)))

(l)

lambda k: n % k == 0, range(1, n)

Exam generated for <EMAILADDRESS> 11

5. (11.0 points) How Long is this Exam?

(a) (5.0 points)

Implement longer, which takes two linked lists of numbers s and t. It returns the longer of the two. If
they have the same length, it returns s.

A linked list is either a Link instance or Link.empty. The Link class is on page 2 of the midterm 2 study
guide.

def longer(s, t):
"""Return the longer linked list, s or t. (Same length? return s.)

>>> longer(Link(2, Link(3)), Link.empty)
Link(2, Link(3))
>>> longer(Link(2, Link(3)), Link(4, Link(5)))
Link(2, Link(3))
>>> longer(Link(2, Link(3)), Link(4, Link(5, Link(6, Link(7)))))
Link(4, Link(5, Link(6, Link(7))))
>>> longer(Link.empty, Link.empty) is Link.empty
True
"""
a, b = s, t

while b is not Link.empty:

if _______:
(a)

return _______
(b)

(c)

return _______
(d)

i. (2.0 pt) Fill in blank (a).

a is Link.empty

ii. (1.0 pt) Fill in blank (b).

a

b

s

 t

longer(a, b)

longer(s, t)

Exam generated for <EMAILADDRESS> 12

iii. (1.0 pt) Fill in blank (c).

a = a.rest

a = s.rest

b = b.rest

b = t.rest

 a, b = a.rest, b.rest

a, b = s.rest, t.rest

iv. (1.0 pt) Fill in blank (d).

a

b

 s

t

longer(a, b)

longer(s, t)

Exam generated for <EMAILADDRESS> 13

(b) (6.0 points)

Implement longest, which takes a linked list of postive integers s and a positive integer n. It returns the
longest sublist of s with elements that sum to a number less than or equal to n. Do not mutate s. In
case of a tie, return any of the longest sublists whose sum is n or less. Assume longer is implemented
correctly.

A sublist of a linked list s is a linked list with some (or none or all) of the elements of s in order.

Assume the sum of the elements of Link.empty is 0. Link.empty is a sublist of any linked list.

def longest(s, n):
"""Return the longest sublist of s that sums to n or less.

>>> longest(Link(5, Link(1, Link(3, Link(4, Link(2, Link(7)))))), 7)
Link(1, Link(3, Link(2)))
>>> longest(Link(5, Link(1, Link(3, Link(4, Link(2, Link(7)))))), 70)
Link(5, Link(1, Link(3, Link(4, Link(2, Link(7))))))
>>> longest(Link(3, Link(4, Link(5))), 2) is Link.empty
True
"""
if s is Link.empty:

return s

t = _______
(e)

if _______:
(f)

return longer(_______ , t)
(g)

else:
return t

i. (1.0 pt) Fill in blank (e).

longest(s, n)

longest(s, n - s.first)

 longest(s.rest, n)

longest(s.rest, n - s.first)

ii. (2.0 pt) Fill in blank (f).

s.first <= n

iii. (3.0 pt) Fill in blank (g).

Link(s.first, longest(s.rest, n - s.first))

Exam generated for <EMAILADDRESS> 14

6. (0.0 points) Nice Path!

This A+ question is not worth any points. It can only affect your course grade if you have a
high A and might receive an A+. Finish the rest of the exam first!

(a) (0.0 pt) Fill in the blank of max_path, which takes a Tree of integers t and a function g. It returns a list
s containing the labels along the path from the root of t to a leaf for which g(s) is as large or larger than
for any other path. In case of a tie, return any path with a maximum g(s) value.

def climb(t, f):
if t.is_leaf():

return [t.label]
return [t.label] + climb(max(t.branches, key=f), f)

def max_path(t, g):
"""Return the path s from the root of t to a leaf for which g(s) is largest.

>>> scare = Tree(0, [Tree(4), Tree(5, [Tree(10)]), Tree(2)])
>>> crow = Tree(4, [Tree(5), Tree(9, [scare, Tree(7, [Tree(6)])]), Tree(8)])
>>> max_path(crow, lambda p: -p[-1]) # The path to the smallest leaf
[4, 9, 0, 2]
>>> max_path(crow, len) # The longest path
[4, 9, 0, 5, 10]
>>> max_path(crow, lambda p: -abs(p[0]-p[-1])) # To the leaf closest in value to the root
[4, 9, 0, 4]
"""

x = [t.label] # You can use x instead of [t.label] to shorten your answer!

return climb(t, lambda b: _______)

g(x + max_path(b, lambda p: g(x + p)))

Exam generated for <EMAILADDRESS> 15

No more questions.

