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April 7th, 2025

Chemistry 120A - Second Midterm Exam

This exam consists of four questions for a total of 100 points. An equation
sheet is given in the back of this exam. Review the point distribution
before starting the exam and read the entire question prompt - it may contain
hints. Your solutions need to be on the front pages of the exam -
the back of the pages can be used as scratch paper, but will not be
considered for grading.
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1. 21pts -Multiple Choice. Fill in the circle of theONE correct answer.
Scratch paper is provided on the next page; only color one circle on
this sheet. Any answers on other sheets will not be graded.

(a) The energetic degeneracy for hydrogen-like atoms to ze-
roth order and energy defined by the principle quantum
number n is...

⃝ n2.

⃝ 2n+ 1.

⃝ depends on the nucleus.

Explanations: Quantum numbers n, l,m can take

l = 0, 1, . . . , n− 1 m = −l, . . . , l
(b) The hydrogen-like orbital function Ψ210(r, θ, ϕ) (the 2pz or-

bital) has...

⃝ only angular nodes.

⃝ one angular node and one radial node.

⃝ two angular nodes and two radial nodes.

(c) The radial wavefunction for the electron in hydrogen-like
atoms...

⃝ depends on quantum numbers n and ml.

⃝ depends on n only.

⃝ depends on quantum numbers n and l.

Explanations: Rnl(r)

(d) If the component of the angular momentum of a particle
in the x-direction of a chosen framework is known,

⃝ the total angular momentum is equal to lx.

⃝ the system is in an Eigenstate of l̂2.

⃝ l̂y and l̂z can be known with unconstrained precision.

Explanations:

A, wrong. It should be l2.

B, correct. [l̂x, l̂
2] = 0.

C, wrong. [l̂x, l̂y] ̸= 0, [l̂x, l̂z] ̸= 0.
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(e) A valid two-electron wavefunction for the He ground state
(1s2 electron configuration) must reflect the indistinguisha-
bility of electrons and have the correct symmetry under
permutation of electrons. Which wavefunction is valid?

⃝ Ψ = 1s(1)1s(2)α(1)α(2)

⃝ Ψ = 1s(1)1s(2)[α(1)β(2) + α(2)β(1)]

⃝ Ψ = 1s(1)1s(2)[(α(1)β(2)− α(2)β(1)]

Explanations: Antisymmetry for Fermionic wavefunctions

(f) A Stern-Gerlach device prepares a beam of Ag atoms
(s=1/2) in the ”spin up” state by discarding atoms with
”spin down” (in the z direction). What is true about a
subsequent measurement of the spin in the x-direction?

⃝ The expectation value is 1
2
ℏ.

⃝ The Ag atoms are deposited in one spot.

⃝ The Eigenvalue of the ŝ2 operator remains unchanged.

Explanations:

A, wrong. P↑x = P↓x = 0.5. The expectation value should be 0.

B, wrong. As above, they should be at two spots.

C, correct. The expectation value of ŝ2 is always 3/4ℏ2.
(g) Several particles with spin are occupying the same spatial

orbital. The particles are Fermions with a spin quantum
number of 3

2
. What’s true?

⃝ There must be strong spin-orbit coupling.

⃝ No more than two particles can be in the same spatial orbital.

⃝ No more than four particles can be in the same spatial orbital.

Explanations:

s = 3
2
, ms = ±3

2
,±1

2
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2. 19pts - Perturbation on a particle-on-a-ring. Consider a particle
of massm confined to move freely on a circular ring of radius r, centered
at the coordinate origin (0, 0). A small perturbation potential is added,
which yields the total Hamiltonian of this system to be

Ĥ(ϕ) = − ℏ2

2mr2
∂2

∂ϕ2
+ rF (cosϕ+ sinϕ+ 1),

where F is a constant in units energy/length.

Figure 1: Coordinate for the particle on a ring.

(a) Identify and write out explicitly the unperturbed Hamiltonian
Ĥ(0)(ϕ) and the perturbative part Ĥ(1)(ϕ) based on Ĥ(ϕ).

The total Hamiltonian is

Ĥ(ϕ) = − ℏ2

2mr2
∂2

∂ϕ2
+ rF

(
cosϕ+ sinϕ+ 1

)
.

We can identify the unperturbed Hamiltonian and the perturba-
tion as follows:

Ĥ(0)(ϕ) = − ℏ2

2mr2
∂2

∂ϕ2
,

Ĥ(1)(ϕ) = rF
(
cosϕ+ sinϕ+ 1

)
.
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(b) Given the zeroth-order Eigenfunctions for Ĥ(0)(ϕ)

ψ(0)(ϕ) =
1√
2π
e+imlϕ,

show that the first-order energy correction due to Ĥ(1)(ϕ) is

E(1) = Fr

for all quantum numbers ml.

The first-order energy correction for a given unperturbed eigen-
state ψ

(0)
ml (ϕ) =

1√
2π
eimlϕ is given by

E(1)
ml

= ⟨ψ(0)
ml
|Ĥ(1)|ψ(0)

ml
⟩ =

∫ 2π

0

ψ(0)∗
ml

(ϕ) Ĥ(1)(ϕ)ψ(0)
ml
(ϕ) dϕ.

Substituting in the expressions for ψ
(0)
ml (ϕ) and Ĥ

(1)(ϕ) we have:

E(1)
ml

=

∫ 2π

0

1√
2π
e−imlϕ

[
rF (cosϕ+ sinϕ+ 1)

] 1√
2π
eimlϕ dϕ.

Since
1√
2π
e−imlϕ · 1√

2π
eimlϕ =

1

2π
,

this becomes

E(1)
ml

= rF
1

2π

∫ 2π

0

(
cosϕ+ sinϕ+ 1

)
dϕ

= rF
1

2π

(
0 + 0 + 2π

)
= rF.

Hence, the first-order energy correction is

E(1) = rF,

which is the same for all quantum numbers ml.
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3. 30pts - H-atom and variational calculations. We consider the
effects of charging on the electronic ground state energy of atomic hy-
drogen.

(a) Write down the Hamiltonian for the H atom. Assume the nucleus
is stationary. Clearly define the used coordinate system and spa-
tial variables. You may chose to indicate the distances between
particles in a drawing. Include any needed physical constants and
name them.

H = − ℏ2

2me

∇2
e −

e2

4πε0r
,

where me (or µ) is the mass (or reduced mass) of the electron,
∇2

e is the Laplacian of the electron, e is the electron charge, r is
the separation between the electron and the nucleus. ℏ and ε0 are
defined as convention.

(b) The energy of the electron in the ground state is E(0) ≈ −13.6eV.
When an H− ion is formed by adding a second electron, the true
total energy for the two electrons is larger than 2E(0). What is
the main reason for this difference?

The main reason for this is energy difference is the repulsive
Coulombic interaction between the two electrons.

A detailed explanation:

The new total Hamiltonian is comprised of two single electron
Hamiltonians as above (1, 2) and their repulsive Coulomb inter-
actions.

HH− = − ℏ2

2m
∇2

1 −
ℏ2

2m
∇2

2 −
e2

4πε0r1
− e2

4πε0r2
+

e2

4πε0r12
,

Given the repulsive potential perturbation, the energy (up to the
first order corrections) should be:

E
(1)
tot = E(0) + E(0) + ⟨ψ(0)

∣∣∣∣ e2

4πε0r12

∣∣∣∣ψ(0)⟩ > 2E(0).
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(c) Write an expression for the perturbation responsible for the devi-
ation from 2E(0) in (b).

The Hamiltonian term responsible for this deviation is

e2

4πε0r12
,

the energy deviation (to the first order) is

⟨ψ(0)

∣∣∣∣ e2

4πε0r12

∣∣∣∣ψ(0)⟩.

(d) A variational calculation is performed to approximate the best
ground state energy of H−. A trial wavefunction ϕtrial(Zeff ; r⃗1, r⃗2)
is defined, where Zeff is a parameter describing the effective nu-
clear charge and r⃗1, r⃗2 are the coordinate vectors of the two elec-
trons. An expression for the energy is found as

E(Zeff ) =
⟨ϕtrial|Ĥ|ϕtrial⟩
⟨ϕtrial|ϕtrial⟩

=

[
Z2

eff −
7

4
Zeff

]
V,

where V is a constant. What value for Zeff gives the best estimate
for the true ground state energy?

To find the optimal Zeff that minimizes the trial energy expecta-
tion, we set the derivative of E(Zeff ) w.r.t. Zeff to 0.

dE(Zeff )

dZeff

= 2Zeff −
7

4
= 0

∴ Zeff =
7

8
.
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(e) Explain why or why not an optimal value of the effective nuclear
charge Zeff < 1 would make physical sense for the H− ion.

This makes sense since each electron experiences a screened (or
shielded) nuclear charge due to the presence of the other electron.
This screening (or shielding) lowers the effective nuclear charge
from the actual H− ion nuclear charge of 1.
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4. 30 pts - Spin-1
2
particle in a magnetic field

A spin-1
2
particle (e.g., an electron) is placed in a uniform magnetic

field of strength B pointing in the z-direction. The magnetic moment
operators in the x and z direction are related to the spin operators via:

µ̂x = γŝx = γ
ℏ
2

(
0 1
1 0

)
(1)

µ̂z = γŝz = γ
ℏ
2

(
1 0
0 −1

)
. (2)

The Hamiltonian of the system is given by:

Ĥ = −µ̂zB = −γŝzB = −γℏB
2

(
1 0
0 −1

)
. (3)

(a) Show that Ĥ commutes with ŝz, i.e., [Ĥ, ŝz] = 0. Justify your
answer using matrix commutators. Explain in a few words why
the energy of the particle depends on the orientation of its spin.

Since the Hamiltonian can be written as

Ĥ = −γBŝz,

the commutator [Ĥ, ŝz] is given by

[Ĥ, ŝz] = Ĥŝz − ŝzĤ.

Substituting Ĥ = −γBŝz into the commutator, we obtain

[Ĥ, ŝz] = (−γBŝz)ŝz − ŝz(−γBŝz) = −γB(ŝ2z − ŝ2z) = 0.

Alternatively, noting that both Ĥ and ŝz are diagonal matrices:

Ĥ = −γℏB
2

(
1 0
0 −1

)
, ŝz =

ℏ
2

(
1 0
0 −1

)
,

Ĥŝz − ŝzĤ =

(
−γℏB

2

(
1 0
0 −1

))(
ℏ
2

(
1 0
0 −1

))
−
(
ℏ
2

(
1 0
0 −1

))(
−γℏB

2

(
1 0
0 −1

))
= −γℏ

2B

4

[(
1 0
0 −1

)(
1 0
0 −1

)
−
(
1 0
0 −1

)(
1 0
0 −1

)]
= −γℏ

2B

4

[(
1 0
0 1

)
−
(
1 0
0 1

)]
=

(
0 0
0 0

)
.
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Thus, we have shown that Ĥ commutes with ŝz.Since the total
energy Ĥ = −µ̂zB = −γŝzB depends on the spin operator ŝz, the
eigenstates of ŝz will corresponds to two different energies of the
particle. Thus, when the spin is aligned with the magnetic field
(i.e., sz = +ℏ/2), the energy is lower; Conversely, when the spin is
anti-aligned with the magnetic field (i.e., sz = −ℏ/2), the energy
is higher

(b) Do Ĥ and ŝx commute? Justify your answer using matrix com-
mutators.

Ĥ = −γℏB
2

(
1 0
0 −1

)
, ŝx =

ℏ
2

(
0 1
1 0

)
.

First, compute Ĥŝx:

Ĥŝx = −γℏ
2B

4

(
1 0
0 −1

)(
0 1
1 0

)
= −γℏ

2B

4

(
0 1
−1 0

)
.

Compute ŝxĤ:

ŝxĤ = −γℏ
2B

4

(
0 1
1 0

)(
1 0
0 −1

)
= −γℏ

2B

4

(
0 −1
1 0

)
.

This simplifies to

[Ĥ, ŝx] = −γℏ
2B

4

[(
0 1
−1 0

)
−
(
0 −1
1 0

)]
= −γℏ

2B

4

(
0 2
−2 0

)
.

Therefore, Ĥ and ŝx do not commute.

We can also use the algebraic method noting

[ŝz, ŝx] = iℏ ŝy.

Since the Hamiltonian is given by

Ĥ = −γB
2
ŝz,

its commutator with ŝx is

[Ĥ, ŝx] = −γB
2

[ŝz, ŝx] = −γB
2

(iℏ sy) = −iγB
2
ŝy.

Because −iγℏB/2 ŝy ̸= 0, we conclude that Ĥ and ŝx do not
commute.
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(c) What are the eigenvalues and normalized eigenvectors of Ĥ? The
Hamiltonian is given by

Ĥ = −γℏB
2

(
1 0
0 −1

)
.

To find the eigenvalues, we solve the eigenvalue equation

det
(
Ĥ − λI

)
= 0.

Substituting Ĥ we have:

det

(
−γℏB

2

(
1 0
0 −1

)
− λ

(
1 0
0 1

))
= det

(
−γℏB

2
− λ 0

0 γℏB
2

− λ

)
= 0.

Solving these, we obtain the following eigenvalues:

λ1 = −γℏB
2

and λ2 =
γℏB
2

.

The corresponding eigenvectors are obtained by noticing that Ĥ
is already diagonal. Therefore, the eigenvectors corresponding to
λ1 and λ2 are:

v1 =

(
1
0

)
for λ1 = −γℏB

2
,

v2 =

(
0
1

)
for λ2 =

γℏB
2

.
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