Name	
Student ID	

April 7th, 2025

Chemistry 120A - Second Midterm Exam

This exam consists of four questions for a total of 100 points. An equation sheet is given in the back of this exam. Review the point distribution before starting the exam and read the entire question prompt - it may contain hints. Your solutions need to be on the front pages of the exam - the back of the pages can be used as scratch paper, but will not be considered for grading.

1.	21pts - Multiple Choice. Fill in the circle of the ONE correct answer.
	Scratch paper is provided on the next page; only color one circle on
	this sheet. Any answers on other sheets will not be graded.

шь	sheet. Any answers on other sheets will not be graded.
(a)	The energetic degeneracy for hydrogen-like atoms to zeroth order and energy defined by the principle quantum number n is
	$\bigcirc n^2$.
	$\bigcirc 2n+1.$
	depends on the nucleus.
	Explanations: Quantum numbers n, l, m can take
	$l = 0, 1, \dots, n - 1 \qquad m = -l, \dots, l$
(b)	The hydrogen-like orbital function $\Psi_{210}(r,\theta,\phi)$ (the $2p_z$ orbital) has
	only angular nodes.
	one angular node and one radial node.
	two angular nodes and two radial nodes.
(c)	The radial wavefunction for the electron in hydrogen-like
	atoms
	\bigcirc depends on quantum numbers n and m_l .
	\bigcirc depends on n only.
	\bigcirc depends on quantum numbers n and l .
	Explanations: $R_{nl}(r)$
(d)	If the component of the angular momentum of a particle in the x-direction of a chosen framework is known,
	\bigcirc the total angular momentum is equal to l_x .
	\bigcirc the system is in an Eigenstate of \hat{l}^2 .

 \hat{l}_y and \hat{l}_z can be known with unconstrained precision.

Explanations:

A, wrong. It should be l^2 .

B, correct. $[\hat{l}_x, \hat{l}^2] = 0$. C, wrong. $[\hat{l}_x, \hat{l}_y] \neq 0$, $[\hat{l}_x, \hat{l}_z] \neq 0$.

(e)	A valid two-electron wavefunction for the He ground state
	($1s^2$ electron configuration) must reflect the indistinguisha-
	bility of electrons and have the correct symmetry under
	permutation of electrons. Which wavefunction is valid?

 $\bigcirc \Psi = 1s(1)1s(2)\alpha(1)\alpha(2)$

 $\bigcirc \Psi = 1s(1)1s(2)[\alpha(1)\beta(2) + \alpha(2)\beta(1)]$

 $\Psi = 1s(1)1s(2)[(\alpha(1)\beta(2) - \alpha(2)\beta(1)]$

Explanations: Antisymmetry for Fermionic wavefunctions

(f) A Stern-Gerlach device prepares a beam of Ag atoms (s=1/2) in the "spin up" state by discarding atoms with "spin down" (in the z direction). What is true about a subsequent measurement of the spin in the x-direction?

 \bigcirc The expectation value is $\frac{1}{2}\hbar$.

O The Ag atoms are deposited in one spot.

 \bigcirc The Eigenvalue of the \hat{s}^2 operator remains unchanged.

Explanations:

A, wrong. $P_{\uparrow_x} = P_{\downarrow_x} = 0.5$. The expectation value should be 0.

B, wrong. As above, they should be at two spots.

C, correct. The expectation value of \hat{s}^2 is always $3/4\hbar^2$.

(g) Several particles with spin are occupying the same spatial orbital. The particles are Fermions with a spin quantum number of $\frac{3}{2}$. What's true?

O There must be strong spin-orbit coupling.

 \bigcirc No more than two particles can be in the same spatial orbital.

O No more than four particles can be in the same spatial orbital.

Explanations:

 $s = \frac{3}{2}, \qquad m_s = \pm \frac{3}{2}, \pm \frac{1}{2}$

2. 19pts - **Perturbation on a particle-on-a-ring.** Consider a particle of mass m confined to move freely on a circular ring of radius r, centered at the coordinate origin (0,0). A small perturbation potential is added, which yields the total Hamiltonian of this system to be

$$\hat{H}(\phi) = -\frac{\hbar^2}{2mr^2} \frac{\partial^2}{\partial \phi^2} + rF(\cos\phi + \sin\phi + 1),$$

where F is a constant in units energy/length.

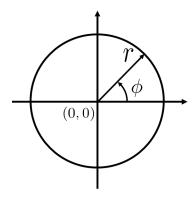


Figure 1: Coordinate for the particle on a ring.

(a) Identify and write out explicitly the unperturbed Hamiltonian $\hat{H}^{(0)}(\phi)$ and the perturbative part $\hat{H}^{(1)}(\phi)$ based on $\hat{H}(\phi)$.

The total Hamiltonian is

$$\hat{H}(\phi) = -\frac{\hbar^2}{2mr^2} \frac{\partial^2}{\partial \phi^2} + rF\left(\cos\phi + \sin\phi + 1\right).$$

We can identify the unperturbed Hamiltonian and the perturbation as follows:

$$\hat{H}^{(0)}(\phi) = -\frac{\hbar^2}{2mr^2} \frac{\partial^2}{\partial \phi^2},$$

$$\hat{H}^{(1)}(\phi) = rF(\cos\phi + \sin\phi + 1).$$

(b) Given the zeroth-order Eigenfunctions for $\hat{H}^{(0)}(\phi)$

$$\psi^{(0)}(\phi) = \frac{1}{\sqrt{2\pi}} e^{+im_l \phi},$$

show that the first-order energy correction due to $\hat{H}^{(1)}(\phi)$ is

$$E^{(1)} = Fr$$

for all quantum numbers m_l .

The first-order energy correction for a given unperturbed eigenstate $\psi_{m_l}^{(0)}(\phi) = \frac{1}{\sqrt{2\pi}}e^{im_l\phi}$ is given by

$$E_{m_l}^{(1)} = \langle \psi_{m_l}^{(0)} | \hat{H}^{(1)} | \psi_{m_l}^{(0)} \rangle = \int_0^{2\pi} \psi_{m_l}^{(0)*}(\phi) \, \hat{H}^{(1)}(\phi) \, \psi_{m_l}^{(0)}(\phi) \, d\phi.$$

Substituting in the expressions for $\psi_{m_l}^{(0)}(\phi)$ and $\hat{H}^{(1)}(\phi)$ we have:

$$E_{m_l}^{(1)} = \int_0^{2\pi} \frac{1}{\sqrt{2\pi}} e^{-im_l \phi} \left[rF(\cos \phi + \sin \phi + 1) \right] \frac{1}{\sqrt{2\pi}} e^{im_l \phi} d\phi.$$

Since

$$\frac{1}{\sqrt{2\pi}}e^{-im_l\phi}\cdot\frac{1}{\sqrt{2\pi}}e^{im_l\phi}=\frac{1}{2\pi},$$

this becomes

$$E_{m_l}^{(1)} = rF \frac{1}{2\pi} \int_0^{2\pi} \left(\cos\phi + \sin\phi + 1\right) d\phi$$
$$= rF \frac{1}{2\pi} \left(0 + 0 + 2\pi\right) = rF.$$

Hence, the first-order energy correction is

$$E^{(1)} = rF,$$

which is the same for all quantum numbers m_l .

- 3. 30pts **H-atom and variational calculations**. We consider the effects of charging on the electronic ground state energy of atomic hydrogen.
 - (a) Write down the Hamiltonian for the H atom. Assume the nucleus is stationary. Clearly define the used coordinate system and spatial variables. You may chose to indicate the distances between particles in a drawing. Include any needed physical constants and name them.

$$H = -\frac{\hbar^2}{2m_e} \nabla_e^2 - \frac{e^2}{4\pi\varepsilon_0 r},$$

where m_e (or μ) is the mass (or reduced mass) of the electron, ∇_e^2 is the Laplacian of the electron, e is the electron charge, r is the separation between the electron and the nucleus. \hbar and ε_0 are defined as convention.

(b) The energy of the electron in the ground state is $E^{(0)} \approx -13.6 \text{eV}$. When an H^- ion is formed by adding a second electron, the true total energy for the two electrons is larger than $2E^{(0)}$. What is the main reason for this difference?

The main reason for this is energy difference is the repulsive Coulombic interaction between the two electrons.

A detailed explanation:

The new total Hamiltonian is comprised of two single electron Hamiltonians as above (1, 2) and their repulsive Coulomb interactions.

$$H_{H-} = -\frac{\hbar^2}{2m}\nabla_1^2 - \frac{\hbar^2}{2m}\nabla_2^2 - \frac{e^2}{4\pi\varepsilon_0 r_1} - \frac{e^2}{4\pi\varepsilon_0 r_2} + \frac{e^2}{4\pi\varepsilon_0 r_{12}},$$

Given the repulsive potential perturbation, the energy (up to the first order corrections) should be:

$$E_{tot}^{(1)} = E^{(0)} + E^{(0)} + \langle \psi^{(0)} \left| \frac{e^2}{4\pi\varepsilon_0 r_{12}} \right| \psi^{(0)} \rangle > 2E^{(0)}.$$

(c) Write an expression for the perturbation responsible for the deviation from $2E^{(0)}$ in (b).

The Hamiltonian term responsible for this deviation is

$$\frac{e^2}{4\pi\varepsilon_0 r_{12}},$$

the energy deviation (to the first order) is

$$\langle \psi^{(0)} \left| \frac{e^2}{4\pi\varepsilon_0 r_{12}} \right| \psi^{(0)} \rangle.$$

(d) A variational calculation is performed to approximate the best ground state energy of H^- . A trial wavefunction $\phi_{\text{trial}}(Z_{eff}; \vec{r}_1, \vec{r}_2)$ is defined, where Z_{eff} is a parameter describing the effective nuclear charge and \vec{r}_1, \vec{r}_2 are the coordinate vectors of the two electrons. An expression for the energy is found as

$$E(Z_{eff}) = \frac{\langle \phi_{\text{trial}} | \hat{H} | \phi_{\text{trial}} \rangle}{\langle \phi_{\text{trial}} | \phi_{\text{trial}} \rangle}$$
$$= \left[Z_{eff}^2 - \frac{7}{4} Z_{eff} \right] V,$$

where V is a constant. What value for Z_{eff} gives the best estimate for the true ground state energy?

To find the optimal Z_{eff} that minimizes the trial energy expectation, we set the derivative of $E(Z_{eff})$ w.r.t. Z_{eff} to 0.

$$\frac{dE(Z_{eff})}{dZ_{eff}} = 2Z_{eff} - \frac{7}{4} = 0$$
$$\therefore Z_{eff} = \frac{7}{8}.$$

(e) Explain why or why not an optimal value of the effective nuclear charge $Z_{eff} < 1$ would make physical sense for the H^- ion. This makes sense since each electron experiences a screened (or shielded) nuclear charge due to the presence of the other electron. This screening (or shielding) lowers the **effective** nuclear charge from the actual H^- ion nuclear charge of 1.

4. 30 pts - Spin- $\frac{1}{2}$ particle in a magnetic field

A spin- $\frac{1}{2}$ particle (e.g., an electron) is placed in a uniform magnetic field of strength B pointing in the z-direction. The magnetic moment operators in the x and z direction are related to the spin operators via:

$$\hat{\mu}_x = \gamma \hat{s}_x = \gamma \frac{\hbar}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \tag{1}$$

$$\hat{\mu}_z = \gamma \hat{s}_z = \gamma \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \tag{2}$$

The Hamiltonian of the system is given by:

$$\hat{H} = -\hat{\mu}_z B = -\gamma \hat{s}_z B = -\frac{\gamma \hbar B}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \tag{3}$$

(a) Show that \hat{H} commutes with \hat{s}_z , i.e., $[\hat{H}, \hat{s}_z] = 0$. Justify your answer using matrix commutators. Explain in a few words why the energy of the particle depends on the orientation of its spin. Since the Hamiltonian can be written as

$$\hat{H} = -\gamma B \hat{s}_z,$$

the commutator $[\hat{H}, \hat{s}_z]$ is given by

$$[\hat{H}, \hat{s}_z] = \hat{H}\hat{s}_z - \hat{s}_z\hat{H}.$$

Substituting $\hat{H} = -\gamma B \hat{s}_z$ into the commutator, we obtain

$$[\hat{H}, \hat{s}_z] = (-\gamma B \hat{s}_z) \hat{s}_z - \hat{s}_z (-\gamma B \hat{s}_z) = -\gamma B (\hat{s}_z^2 - \hat{s}_z^2) = 0.$$

Alternatively, noting that both \hat{H} and \hat{s}_z are diagonal matrices:

$$\hat{H} = -\frac{\gamma \hbar B}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \hat{s}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$\hat{H}\hat{s}_z - \hat{s}_z \hat{H} = \begin{pmatrix} -\frac{\gamma \hbar B}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{pmatrix} - \begin{pmatrix} \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} -\frac{\gamma \hbar B}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{pmatrix}$$

$$= -\frac{\gamma \hbar^2 B}{4} \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Thus, we have shown that \hat{H} commutes with \hat{s}_z . Since the total energy $\hat{H} = -\hat{\mu}_z B = -\gamma \hat{s}_z B$ depends on the spin operator \hat{s}_z , the eigenstates of \hat{s}_z will corresponds to two different energies of the particle. Thus, when the spin is aligned with the magnetic field (i.e., $s_z = +\hbar/2$), the energy is lower; Conversely, when the spin is anti-aligned with the magnetic field (i.e., $s_z = -\hbar/2$), the energy is higher

(b) Do \hat{H} and \hat{s}_x commute? Justify your answer using matrix commutators.

$$\hat{H} = -\frac{\gamma \hbar B}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \hat{s}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

First, compute $\hat{H}\hat{s}_x$:

$$\hat{H}\hat{s}_x = -\frac{\gamma\hbar^2 B}{4} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} = -\frac{\gamma\hbar^2 B}{4} \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}.$$

Compute $\hat{s}_x \hat{H}$:

$$\hat{s}_x \hat{H} = -\frac{\gamma \hbar^2 B}{4} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = -\frac{\gamma \hbar^2 B}{4} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

This simplifies to

$$[\hat{H}, \hat{s}_x] = -\frac{\gamma \hbar^2 B}{4} \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \end{bmatrix} = -\frac{\gamma \hbar^2 B}{4} \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}.$$

Therefore, \hat{H} and \hat{s}_x do not commute.

We can also use the algebraic method noting

$$[\hat{s}_z, \hat{s}_x] = i\hbar \,\hat{s}_y.$$

Since the Hamiltonian is given by

$$\hat{H} = -\frac{\gamma B}{2}\,\hat{s}_z,$$

its commutator with \hat{s}_x is

$$[\hat{H}, \hat{s}_x] = -\frac{\gamma B}{2} [\hat{s}_z, \hat{s}_x] = -\frac{\gamma B}{2} (i\hbar \, s_y) = -i\frac{\gamma B}{2} \, \hat{s}_y.$$

Because $-i\gamma\hbar B/2\,\hat{s}_y\neq 0$, we conclude that \hat{H} and \hat{s}_x do not commute.

(c) What are the eigenvalues and normalized eigenvectors of \hat{H} ? The Hamiltonian is given by

$$\hat{H} = -\frac{\gamma \hbar B}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

To find the eigenvalues, we solve the eigenvalue equation

$$\det\left(\hat{H} - \lambda I\right) = 0.$$

Substituting \hat{H} we have:

$$\det\left(-\frac{\gamma\hbar B}{2}\begin{pmatrix}1&0\\0&-1\end{pmatrix}-\lambda\begin{pmatrix}1&0\\0&1\end{pmatrix}\right)=\det\left(-\frac{\gamma\hbar B}{2}-\lambda&0\\0&\frac{\gamma\hbar B}{2}-\lambda\right)=0.$$

Solving these, we obtain the following eigenvalues:

$$\lambda_1 = -\frac{\gamma \hbar B}{2}$$
 and $\lambda_2 = \frac{\gamma \hbar B}{2}$.

The corresponding eigenvectors are obtained by noticing that \hat{H} is already diagonal. Therefore, the eigenvectors corresponding to λ_1 and λ_2 are:

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{for} \quad \lambda_1 = -\frac{\gamma \hbar B}{2},$$

$$\mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \text{for} \quad \lambda_2 = \frac{\gamma \hbar B}{2}.$$