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February 28th, 2025

Chemistry 120A - First Midterm Exam

This exam consists of five questions for a total of 100 points. An equation
sheet is given in the back of this exam. Review the point distribution
before starting the exam and read the entire question prompt - it may contain
hints. Your solutions need to be on the front pages of the exam -
the back of the pages can be used as scratch paper, but will not be
considered for grading.

1. 32pts - Multiple Choice. Circle the ONE correct answer. Scratch
paper is provided on the next page; only provide the circled answer
on this sheet. Any answers on other sheets will not be graded.

(a) The de Broglie wavelength of two particles with identical
linear momentum, but different masses is...

(i) different.

(ii) always identical.

(iii) identical, but only for some masses.

(b) A quantum particle is in infinite space without any po-
tentials acting on it. What is true about the momentum
of this particle?

(i) it can be measured with arbitrarily high precision while its
position is known

(ii) it must come from a particle with finite mass.

(iii) its momentum is not quantized
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(c) Consider the spectrum of hydrogen as described by Ry-
dberg’s formula. Lines in the optical spectrum...

(i) ...are observed if the quantum numbers of the initial and final
states are the same (n1 = n2).

(ii) ...have an increasing frequency (shorter wavelength) with in-
creasing difference between n1 and n2.

(iii) ...don’t exist, unless the hydrogen is negatively charged.

(d) Two operators Â and B̂ commute, that is [Â, B̂] = 0. The
observables corresponding to these operators can be mea-
sured...

(i) ...simultaneously with infinite precision.

(ii) ...only simultaneously.

(iii) ...simultaneously with limited precision.

(iv) ...sequentially with limited precision.

(e) A quantum harmonic oscillator exists in a state |Ψ⟩ which
would give energy measurements of 1

2
ℏω and 3

2
ℏω 50% of

the time, respectively. What is the properly normalized
wavefunction if |n⟩ is the nth Eigenstate of the Hamilto-
nian?

(i) |Ψ⟩ = 1√
2
(|1⟩+ |3⟩)

(ii) |Ψ⟩ = 1√
2
(|1⟩ − i |3⟩)

(iii) |Ψ⟩ = 1√
2
(|1⟩+ i |0⟩)

(iv) |Ψ⟩ = 1√
2
(|0⟩ − |2⟩)

2



(g) Some wavefunction Ψ(x) is written as a super-position of
Eigenfunctions of the Hamiltonian of a system with quan-
tum numbers n: Ψ(x) =

∑
n cnϕn(x). The time-dependence

is added correctly in...

(i) ... Ψ(x, t) =
∑

n cnϕn(x)e
−i⟨E⟩t

ℏ , where ⟨E⟩ is the energy ex-
pectation value of Ψ(x).

(ii) ...Ψ(x, t) =
∑

n cnϕn(x)e
−iEnt

ℏ , where En are the energy eigen-
values of ϕn(x).

(iii) ...Ψ(x, t) =
∑

n cnϕn(x)e
−iωt with ω a frequency of choice, for

example that of light.

(h) A one-dimensional wavefunction Ψ(x) is perfectly sym-
metric around x = 0 and non-zero for some x ̸= 0. The
expectation value of the position operator squared x̂2, de-
fined as

∫
Ψ∗(x)x̂2Ψ(x)dx, is...

(i) zero.

(ii) strictly positive.

(iii) not enough information to tell.

(h) The Eigenfunctions of the Hamiltonian for the 1D quan-
tum harmonic oscillator ϕv(x)...

(i) ...have a non-zero overlap integral
∫
ϕ∗
v(x)ϕw(x)dx for differ-

ent functions v and w, that is v ̸= w.

(ii) ...are also Eigenfunctions of the momentum operator p̂.

(iii) ... have exactly v nodes (zero-crossings).
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2. 15pts - Sequential Measurements. An operator Â has two normal-
ized eigenstates ψ1 and ψ2, with corresponding eigenvalues a1 and a2.
Likewise, operator B̂ has two normalized eigenstates ϕ1 and ϕ2, with
eigenvalues b1 and b2. The eigenstates are related by

ψ1 =
3ϕ1 + 4ϕ2

5
, ψ2 =

4ϕ1 − 3ϕ2

5
.

(a) Observable A (associated with the operator Â) is measured, and
the value a1 is obtained. What is the state of the system im-
mediately after this measurement in terms of Eigenfunctions of
Â?

The system is in ψ1 right after the eigenvalue a1 is measured.

(b) Continued from (a), if observable B is now measured, what are
the possible outcomes and their probabilities?

After a1 is measured, the system is collapsed in ψ1. The possible
outcome of measuring B corresponds to the eigenvalues of B̂ which
are b1 and b2. The probability of measuring those values are given
by the modular square of the inner product between ψ1 and ϕ1 or
ϕ2:

P(outcome = b1) = | ⟨ϕ1|ψ1⟩ |2 =
(
3

5

)2

=
9

25

P(outcome = b2) = | ⟨ϕ2|ψ1⟩ |2 =
(
4

5

)2

=
16

25
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(c) Right after, a subsequent measurement of B resulted in a value b1.
B is measured again right away (measuring the same observable
twice). What is the probability of getting b2 and why? Explain
in just a few words.

Sequentially measuring the same observable will yield the same
result. In this case, if the first measurement gives b1, the the
subsequent measurement will also give b1 with probability 1. This
means the probability of getting b2 is 0.
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3. 18pts - Properties of wavefunctions. Look at the following nor-
malized (real) wavefunctions, plotted as Ψ(x) for a particle confined in
space so that −1 < x < 1:

−1 0 1
x
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−2
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0
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I

−1 0 1
x

−3
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−1

0

1

2
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−1 0 1
x

−3

−2

−1

0

1

2

3
III

Answer the following questions. Hint: You do not have to perform any
calculations.

(a) Which of the wavefunctions (I,II, or III) will give the largest value
for the expectation value of ⟨x̂⟩? Briefly give your reason.

I. All the other functions will have symmetric distribution |Ψ(x)|2
so the ⟨x̂⟩ becomes zero.

(b) Which of the wavefunctions (I,II, or III) will give the larget value
for the expectation value of ⟨x̂2⟩? Briefly give your reason.

II. |Ψ(x)|2 so the ⟨x̂⟩ has larger contribution from large x. (or it
has larger variation)

(c) Which of the wavefunctions (I,II, or III) will have the highest

expectation value for the kinetic energy ⟨p̂2⟩
2m

? Briefly give your
reason.

III. |Ψ(x)|2 for III has large frequency components (fast oscilla-
tion) which correspond to large kinetic energy.
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4. 25pts - Particle in a 2D potential well. A particle of mass m is
confined in a potential V (x, y) defined as:

V (x, y) =

{
∞, for x < −a and x > a,

V0 +
1
2
ky2, for − a ≤ x ≤ a,

(1)

where k and V0 ≥ 0 are real positive constants. The total Hamiltonian
Ĥ(x, y) can be written as the sum of two components, Ĥ(x) and Ĥ(y),
where:

Ĥ(x, y) = Ĥ(x) + Ĥ(y) + V̂0 (2)

The potential corresponds to a particle-in-a-box (PIB) potential in the
x-direction (with boundaries at x = −a and x = a) and a quantum
harmonic oscillator (QHO) potential in the y-direction.

(a) Write Ĥ(x) and Ĥ(y) explicitly in terms of derivatives and poten-
tial terms.

Ĥ(x) = − ℏ2

2m

∂2

∂x2
+ V1(x), V1(x) =

{
∞, x < −a or x > a,

0, −a ≤ x ≤ a.

Ĥ(y) = − ℏ2

2m

∂2

∂y2
+ V2(y), V2(y) =

1

2
ky2.

Ĥ(x) describes a PIB system, and Ĥ(y) describes a QHO with a
potential minimum at y = 0.

(b) Show that ϕn(x) =
√

1
a
sin

(
nπx
2a

)
, −a ≤ x ≤ a is an Eigenfunction

of Ĥ(x). Hint: The energy Eigenvalues are En = n2h2

32ma2
.

Within the interval −a ≤ x ≤ a, differentiating twice gives

d2

dx2
ϕn(x) = −

(nπ
2a

)2

ϕn(x).

Thus,

Ĥxϕn(x) = − ℏ2

2m

[
−
(nπ
2a

)2

ϕn(x)

]
=

ℏ2

2m

(nπ
2a

)2

ϕn(x).

7



Since (nπ
2a

)2

=
n2π2

4a2
,

we have

Ĥϕn(x) =
n2π2ℏ2

8ma2
ϕn(x).

En =
n2π2ℏ2

8ma2
=

n2h2

32ma2
.

Thus, ϕn(x) is indeed an eigenfunction of Ĥ(x) with eigenvalue
En.

(c) The principle of separation of variables permits product wavefunc-
tions Ψn,v(x, y) = ϕn(x)ψv(y) as solutions to Ĥ(x, y), where ψv(y)

are Eigenfunctions of Ĥ(y). Show that the total energy is given
by En,v = En + Ev + V0.

To find the total energy, we apply the total Hamiltonian Ĥ(x, y)
on the product wavefunction Ψn,v(x, y) = ϕn(x)ψv(y),

Ĥ(x, y)Ψn,v(x, y) =
[
Ĥ(x) + Ĥ(y) + V̂0

]
[ϕn(x)ψv(y)]

This can be simplified since Ĥ(x) only operates on ϕn(x), and
Ĥ(y) only operates on ϕn(x),

Ĥ(x, y)Ψn,v(x, y)

=
[
Ĥ(x)ϕn(x)

]
ψv(y) +

[
Ĥ(y)ψv(y)

]
ϕn(x) + V0Ψn,v(x, y)

= Enϕn(x)ψv(y) + Evψv(y)ϕn(x) + V0Ψn,v(x, y)

= (En + Ev + V0)Ψn,v(x, y)

Thus, the total energy is given by

En,v = En + Ev + V0
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(d) What is the zero-point energy of the particle? Hint: En and Ev

are the Eigenenergies of the particle in a box and the quantum
harmonic oscillator, respectively.

The zero-point energy corresponds to the ground state energy (n =
1, v = 0):

Ezero-point = En=1 + Ev=0 + V0 =
h2

32ma2
+

1

2
ℏω + V0,

where ω =
√

k
m
.
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5. 20pts - Particle on a ring. ψm(ϕ) = 1√
2π
eimϕ, (m = 0,±1,±2, . . . )

are the normalized Eigenfunctions of the angular momentum operator
L̂z = −iℏ d

dϕ
for the particle on a ring model system, where ϕ is the

angular coordinate of the particle. We consider the case where the
particle’s orbit is in the x-y plane, so that Lx = Ly = 0.

(a) The particle is prepared in a state with Ψ(ϕ) = A
∑m=2

m=−2 e
imϕ.

A is a normalization constant so that ⟨Ψ(ϕ)|Ψ(ϕ)⟩ = 1. If Lz is
measured, what are the possible values and their probabilities?

The wavefunction is a linear combination of 5 eigenstates of L̂z

with the same coefficients. Therefore, the possible observed values
from measuring L̂z are the corresponding eigenvalues, each with
1/5 probability of observation.

I.e., the possible values from measuring L̂z are 0,±ℏ,±2ℏ, each
with 1/5 probability.

(b) What is the expectation value ⟨L̂z⟩ of the state Ψ(ϕ)? Hint: Con-
sider the symmetry of the wavefunction.
The wavefunction is a sum of eigenstates with angular momentum
quantum numbers m = −2,−1, 0, 1, 2. Each of these eigenfunc-
tions contributes an angular momentum of −2ℏ,−ℏ, 0, ℏ, 2ℏ.
Since the coefficients in front of each eigenstate are the same, the
expectation value of the angular momentum will be zero. Positive
and negative contributions of angular momentum will cancel each
other out.

(c) The Hamiltonian is defined as Ĥ(ϕ) = L̂2
z

2I
, where I is the moment

of inertia. What is the expectation value for the energy for the
state Ψ(ϕ) in (a)?

Similarly, each of the eigenstates with angular momentum quan-
tum numbers m = −2,−1, 0, 1, 2 has energy of contributes an
angular momentum of 4ℏ2

2I
, ℏ

2

2I
, 0, ℏ

2

2I
, 4ℏ

2

2I
.

Since the coefficients in front of each eigenstate are the same, the
expectation value for the energy is:

2

5
· 4ℏ

2

2I
+

2

5
· ℏ

2

2I
=

ℏ2

I
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Intentionally left blank as scratch paper
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Equation Sheet

Constants:

h = 6.626× 10−34 J · s
c = λν = 2.998× 108m/s

Spherical Coordinates:

r =
√
x2 + y2 + z2

θ = arccos
z

r

ϕ = arctan
y

x
x = r cosϕ sin θ

y = r sinϕ sin θ

z = r cos θ

dx dy dz = r2 sin θ dr dθ dϕ

Euler’s Formula:

e±iθ = cos θ ± i sin θ

cos θ =
1

2

(
eiθ + e−iθ

)
sin θ =

1

2i

(
eiθ − e−iθ

)
Linear Position and Momentum Operators (1D):

x̂ = x

p̂ = −iℏ ∂
∂x
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Commutator: [
Â, B̂

]
= ÂB̂ − B̂Â

Particle in a 1D Box:

For a box of length L:

En =
h2n2

8mL2
, n = 1, 2, . . .

ψn(x) =

√
2

L
sin

(nπx
L

)
, 0 ≤ x ≤ L

Quantum Harmonic Oscillator (1D):

For a particle of mass m and frequency ω:

Ĥ = − ℏ2

2m

d2

dx2
+

1

2
mω2x2

ω =

√
k

m

Ev =

(
v +

1

2

)
ℏω , v = 0, 1, 2, . . .

ψv(x) =
1√
2vv!

(mω
πℏ

)1/4

Hv

(√
mω

ℏ
x

)
e−

mω
2ℏ x2

,

with Hv as the Hermite Polynominals given below.

Hv=0(x) = 1

Hv=1(x) = 2x

ψ0(x) =
(mω
πℏ

)1/4

e−
mω
2ℏ x2

,

ψ1(x) =
(mω
πℏ

)1/4√
2

(√
mω

ℏ
x

)
e−

mω
2ℏ x2

.

13



Energy Levels of Hydrogenic Atoms with Nuclear
Charge Z:

En =
−Z2e2

2a0n2
, n = 1, 2, . . .

Angular Momentum:

L̂z = −iℏ ∂

∂ϕ

L̂2 |l,ml⟩ = ℏ2l (l + 1) |l,ml⟩
L̂z |l,ml⟩ = ℏml |l,ml⟩

Particle on a ring:

For a particle of mass m moving on a ring of radius R:

Ĥ = −ℏ2

2I

d2

dϕ2
with I = mR2,

ψm(ϕ) =
1√
2π
eimϕ, m = 0,±1,±2, . . . ,

Em =
ℏ2m2

2I
for m = 0,±1,±2, . . . ,
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