
MATH 1B MIDTERM 2 (LEC 001)

PROFESSOR PAULIN

INSTRUCTIONS

• Do not turn over until instructed to do so.

• Write your name and SID in the spaces provided on one side of every page of
the exam.

• This exam consists of 5 questions.

• You have 60 minutes to complete this exam.

• This exam will be electronically scanned. Do not add or remove any pages from the exam.

• There is an extra blank page for scratch work on the back of the exam. It can also be used
as extra space to write formal solutions as long as everything is clearly labeled.

• Calculators are not permitted.

• Show as much working as possible. Even if you don’t end up with the correct answer, you
may still get partial credit. Answers without justification will be viewed with suspicion and
will not receive credit.

• You will find a simple formula sheet on the back of this page.
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Math 1B Midterm Exam 2 (LEC 001)

Formulae

ex = 1 + x+
x2

2! +
x3

3! + · · · =
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n=0
xn

n!

sin x = x→ x3

3! +
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n x2n+1

(2n+1)!
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2n+1

ln(1 + x) = x→ x2

2 +
x3
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4 +
x5

5 → · · · =
∑→

n=1(→1)
n↑1 xn

n

(1 + x)k = 1 + kx+
k(k↑1)

2! x2
+

k(k↑1)(k↑2)
3! x3

+ · · · =
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(
k
n

)
xn

limn↓→(
n+1
n )

n
= e |RN(x)| ↑ MN |x↑a|N+1
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1. (30 points) Determine the convergence or divergence of the following infinite series:

(a)
→∑

n=1

(→1)
n 3

2n→ 1

Solution:

(b)
→∑

n=1

n3
tan(

4

n4
)

Solution:
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2. (30 points) Determine the radius of convergence of the following power series.

→∑

n=1

nn
(2x+ 1)

n

1 · 5 · 9 · · · (4n→ 3)

Solution:
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3. (30 points) Using the integral test, and any other relevant tests, determine whether the

following infinite series is absolutely convergent, conditionally convergent, or divergent.

→∑

n=1

(→1)
n n

(n2 + 1)2

Be sure to check that all appropriate conditions hold.

Solution:
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4. (30 points) Find a power series (centered at 1) that represents the following function on

an open interval containing 1.

f(x) =
xex

e
Carefully justify your answer and be sure to include a general term.

What is the value of f (2025)
(1)

Solution:
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5. (30 points) Show that the polynomial function →2x → 2x2
approximates the function

f(x) = ln(1→ 2x) to within
1
3 for all x in [→1/4, 1/4]. Carefully justify your answer.

Solution:
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