Midterm 1

Last Name	First Name	SID
Left Neighbor Full Name	Right Neighbor Full Name	Room Number

Rules.

- Write all numerical answers clearly. Answers that are illegible may not get credit.
- You have 110 minutes to complete the exam. DSP students with X% time accommodation will get $110 \cdot X\%$ time on the exam.
- This exam is not open book. You may reference one double-sided handwritten sheets of paper. No calculator or phones allowed.
- All problems **require** work and explanations, **including** the multiple choice problems. Write your explanations succinctly and clearly. If your work is illegible or otherwise not clear, you may get no credit for the problem.
- For multiple choice problems, select one of the choices by filling in the bubble completely.
- Collaboration with others is strictly prohibited. If you are caught cheating, you will receive a 0 on the exam and will face disciplinary consequences.
- Write in your SID on every page to receive 1 point.

D 11		
Problem	points earned	out of
	1	
		1
SID		1
Problem 1		40
		10
D 11 0		01
Problem 2		31
Problem 3		23
		20
D 11 4		~~~
Problem 4		25
Total		120
IUtai		120

1 Potpourri (12 + 10 + 18 points)

(a) Periodic Table of Signals (4 points each)

Determine whether or not each of the following discrete- or continuous-time signals is periodic. If the signal is periodic, determine its fundamental frequency **in radians per second**.

(i)
$$x[n] = e^{\frac{i\pi n}{\sqrt{2}}}$$

(ii)
$$x(t) = \cos^2(2\pi t)$$

(iii)
$$x[n] = \sin\left(\frac{8}{15}\pi n\right) + \sin\left(\frac{2}{15}\pi n\right)$$

(b) Look, That's Incredible! (5 points each)

(i) Consider a discrete-time system F with the input-output pair shown below. Both the input x[n] and the output y[n] repeat periodically outside of the region shown.

Choose one of the following options and explain your reasoning.

- \bigcirc The system must be LTI.
- \bigcirc The system can be LTI, but does not have to be.
- \bigcirc The system must not be LTI.

(ii) Consider a **different** discrete-time system **G** with the input-output pair shown below. Both the input x[n] and the output y[n] repeat periodically outside of the region shown.

Choose one of the following options and explain your reasoning.

- \bigcirc The system must be LTI.
- \bigcirc The system can be LTI, but does not have to be.
- \bigcirc The system must not be LTI.

(c) A Horse Walks Into a System... (6 points each)

The following are the impulse responses or input-output equations of various discrete-time systems. Let u[n] denote the unit step function. Determine whether each system is causal and/or BIBO stable. Justify your reasoning.

(i) Impulse response: h[n] = u[n]Note: This system is LTI.

 \bigcirc Causal \bigcirc Not causal

 \bigcirc BIBO stable

 \bigcirc Not BIBO stable

(ii) Input-Output Equation: y[n] = u[-n]x[n]

 \bigcirc Causal

 \bigcirc Not causal

 \bigcirc BIBO stable

 \bigcirc Not BIBO stable

Student ID: _____

- (iii) Impulse response: $h[n] = (\frac{3}{2})^n u[-n-5]$ Note: This system is LTI.
 - \bigcirc Causal \bigcirc Not causal

 \bigcirc BIBO stable

 \bigcirc Not BIBO stable

•

2 Leaky Integrator (7 + 8 + 8 + 8 points)

A **causal**, discrete-time LTI system is described by the difference equation

$$y[n] = \alpha y[n-1] + (1-\alpha) x[n], \quad 0 < \alpha < 1,$$

(a) Find the impulse response h[n] of the system.

(b) Using the impulse response from part (a), derive the output y[n] of this system when the input is the signal x[n] = c for $n \ge 0$ and x[n] = 0 for n < 0, and quantitatively explain the system's response to a constant input signal as ngoes to infinity. Page 8 of 14

Student ID: _____

(c) Prove that if **any** LTI system is stable and its input x[n] is periodic with period N, then its output y[n] is also periodic with the same period.

(d) Recall the causal, discrete-time LTI system:

$$y[n] = \alpha y[n-1] + (1-\alpha) x[n], \quad 0 < \alpha < 1,$$

Let the input be a pulse train:

$$x[n] = \sum_{k=-\infty}^{\infty} \delta[n-kN],$$

where N is a positive integer (i.e. the period of the impulse train).

Sketch the output y[n] of the original system on the plot below when $\alpha = 0.1$ and N = 5 for $n \in \{-10, -9, -8, \dots, 10\}$. Is the output a periodic signal? *Note:* Do not attempt to calculate the exact value at each time point, just qualitatively draw the plot roughly to scale.

3 Fourier's Favorite Trick (6 + 12 + 5 points)

Consider a discrete-time LTI system H with the following frequency response $H(\omega)$:

$$H(\omega) = \frac{3}{2 - 2e^{-i4\omega}}$$

(a) Find the LCCDE representation of this system.

(b) Determine the output of the system y[n] when the input is $x[n] = \sin(\frac{\pi}{8}n)$. Express y[n] using sine or cosine, **not** with complex exponentials. (c) Plot the magnitude response $|H(\omega)|$ of this system for $-\pi \leq \omega \leq \pi$ on the axes below.

4 DAG Basics (6 + 14 + 5 points)

Note that each subpart are **distinct** systems and have no relation to each other.

(a) System F has the LCCDE

$$y[n] + 2y[n-1] = \frac{1}{3}x[n] - x[n-2]$$

Draw a DAG block diagram for this system with the minimum number of delay blocks.

(b) System ${\sf G}$ has the following DAG block diagram.

Find the state-space representation of this system, where $\mathbf{q}[n] = \begin{bmatrix} q_1[n] & q_2[n] & q_3[n] \end{bmatrix}^{\top}$. Explicitly identify the values A, B, C, and D, where

$$\mathbf{q}[n+1] = A\mathbf{q}[n] + Bx[n]$$
$$y[n] = C\mathbf{q}[n] + Dx[n]$$

Note: The junction with a dot indicates all paths are connected.

Student ID: _____

(More space for part (b))

(c) Now consider the discrete-time LTI system H with the following state-space representation:

$$\mathbf{q}[n+1] = \begin{bmatrix} 1-i & 1\\ 0 & \frac{1}{2} \end{bmatrix} \mathbf{q}[n] + \begin{bmatrix} -1\\ 2 \end{bmatrix} x(n)$$
$$y[n] = \begin{bmatrix} i & 1 \end{bmatrix} \mathbf{q}[n]$$

Is system H internally stable? Show your work.