1. (6 pts) Recall Reynolds' transport theorem

$$rac{d}{dt} \int_{P_t} \phi dv = \int_{P_t} \phi' dv + \int_{\partial P_t} \phi \mathbf{v} \cdot \mathbf{n} da,$$

where the time derivative on the left-hand side is carried out for a fixed set S of material points, the notation ()' stands for the time derivative at fixed spatial position \mathbf{x} , and $\mathbf{v}(\mathbf{x},t)$ is the material velocity field.

(a) Using Reynolds' transport theorem, show that the conservations of mass and linear momentum, namely

$$rac{d}{dt}\int_{P_t}
ho dv=0$$

and

$$\frac{d}{dt} \int_{P_t} \rho v_i dv = \int_{\partial P_t} T_{ij} n_j da + \int_{P_t} \rho b_i dv,$$

may be cast in the forms

$$\int_{P_t} [
ho' + div(
ho \mathbf{v})] dv = 0$$

and

$$\int_{P_t} (\rho v_i)' dv = \int_{P_t} [(T_{ij} - \rho v_i v_j)_{,j} + \rho b_i] dv,$$

respectively. Here the subscripts refer to components of vectors and tensors with respect to a fixed orthonormal basis, and the notation $(\cdot)_{,j}$ stands for $\partial(\cdot)/\partial x_j$, where x_i (i=1,2,3) are the corresponding Cartesian coordinates of \mathbf{x} .

(b) Use these results together with the Localization Theorem to obtain the pointwise balance equations

$$\rho' + div(\rho \mathbf{v}) = 0$$
 and $(\rho \mathbf{v})' = div(\mathbf{T} - \rho \mathbf{v} \otimes \mathbf{v}) + \rho \mathbf{b}$

holding at all points in the interior of κ_t .

(c) (Extra credit) Obtain the result of part (b) directly from the mass-conservation equation and the local equation of motion

$$div\mathbf{T} + \rho \mathbf{b} = \rho \dot{\mathbf{v}}.$$

2. (7 pts) Consider the velocity field given, in terms of polar coordinates and in the spatial description, by

$$\mathbf{v} = r\omega \mathbf{e}_{\theta}(\theta) + w(r)\mathbf{k},$$

where ω is a constant and w(r) is a given function. Note that this velocity field is steady, i.e., $\mathbf{v}' = \mathbf{0}$.

(a) Derive the expression

$$\mathbf{L} = [\omega \mathbf{e}_{\theta} + w'(r)\mathbf{k}] \otimes \mathbf{e}_r - \omega \mathbf{e}_r \otimes \mathbf{e}_{\theta}$$

for the spatial velocity gradient.

(b) Use $\dot{J}=Jtr\mathbf{L}$ to show that $\dot{J}=0$ and hence that the spatial form of the mass conservation equation reduces to

$$\rho' + \mathbf{v} \cdot \nabla \rho = 0,$$

where ρ' and $\nabla \rho$ respectively are the time derivative and gradient in the spatial description.

- (c) Consider a material curve with unit tangent \mathbf{m} in κ_t . Show that the stretch μ of this material curve has the material derivative $\dot{\mu} = 0$ in each of the three cases $\mathbf{m} = \mathbf{e}_r, \mathbf{e}_\theta, \mathbf{k}$.
 - 3. (7 pts) The Cauchy stress in an inviscid compressible gas is of the form

$$\mathbf{T}=-p(
ho)\mathbf{I},$$

where $p(\rho)$ is the pressure-density relation. For example, in an ideal gas this relation is $p(\rho) = k\rho$, where k is a constant that characterizes the particular ideal gas considered.

(a) Derive the relation

$$div\mathbf{T} = -p'(\rho)\nabla\rho,$$

where $p'(\rho) = dp/d\rho$.

(b) Assuming zero body force, show that the equation of motion for a gas undergoing the motion of Problem # 2 reduces to

$$p'(\rho)\nabla\rho = \rho r\omega^2 \mathbf{e}_r.$$

Hence, assuming that $p'(\rho) \neq 0$, show that $\rho(\mathbf{x}, t)$ is steady, i.e., its spatial time derivative is $\rho' = 0$. Further, show that ρ can depend only on the radius r.

(c) Assume an ideal gas and derive an expression for the function $\rho(r)$. Impose the condition $\rho(0) = \rho_0$, a given constant. [Note: the density is not affected by the axial component w(r) of the velocity field.]