EECS 120, Midterm 1 Solution, 3/8/06

Do your calculations on the sheets and put a box around your answer where this makes sense. Print your name and your TA's name and section time here:

Last Name First TA's name Se	ction time
------------------------------	------------

Prob #	Max	Score
1	15	
2	15	
3	10	
4	15	
5	20	
6	10	
7	15	
Total	100	

Useful tips

FT pairs

Signal $t \to x(t)$	$\omega \to X(\omega)$	$f \to X(f)$
X(t)	$2\pi x(-\omega)$	x(-f)
$x(t) \equiv 1$	$X(\omega) = 2\pi\delta(\omega)$	$X(f) = \delta(f)$
$x(t) = \delta(t)$	$X(\omega) \equiv 1$	$X(f) \equiv 1$
$x(t) = \operatorname{sgn}(t)$	$X(\omega) = \frac{2}{i\omega}$	$X(f) = \frac{1}{j\pi f}$
x(t) = u(t)	$X(\omega) = \frac{1}{i\omega} + \pi\delta(\omega)$	$X(f) = \frac{1}{j2\pi f} + \frac{1}{2}\delta(f)$
$x(t) = \frac{1}{\pi t}$	$X(\omega) = -j \mathrm{sgn}(\omega)$	$X(f) = -j\mathrm{sgn}(f)$
$x(t) = \Pi(t) = 1, t \le 1/2, 0$ else	$\frac{\sin(\pi f)}{\pi f}$	$\frac{\sin(\omega/2)}{\omega/2}$
$\sum \delta(t - kT_0)$	$\frac{1}{T_0}\sum \delta(f-f_0)$	$\frac{2\pi}{T_0}\sum_{i=1}^{T_0}\delta(\omega-\omega_0)$
$X_n \sum e^{jn\omega_0 t}$	$\sum_{n=1}^{\infty} X_n \delta(f - nf_0)$	$2\pi \sum \delta(\omega - n\omega_0)$
$\hat{x}(t)$	$-j \operatorname{sgn}(f) X(f)$	$-j \operatorname{sgn}(\omega) X(\omega)$

FT properties

x(at)	$\frac{1}{ a }X(\frac{f}{a})$	$\frac{1}{ a }X(\frac{\omega}{a})$
x * y	X(f)Y(f)	$X(\omega)Y(\omega)$
x(t)y(t)	(X * Y)(f)	$\frac{1}{2\pi}(X*Y)(\omega)$
X(t)	x(-f)	$ ilde{2}\pi x(-\omega)$
$e^{2\pi f_0 t} x(t)$	$X(f-f_0)$	$X(\omega - \omega_0)$
$\dot{x}(t)$	$(j2\pi f)X(f)$	$(j\omega)X(\omega)$
$\frac{\dot{x}(t)}{\int_{-\infty}^{t} x(s) ds}$	$\frac{1}{j2\pi f} + \frac{1}{2}X(0)\delta(f)$	$\frac{1}{j\omega}X(\omega) + \pi X(0)\delta(\omega)$

Parseval's theorem.

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$$

Trig identities

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$$

$$\sin x \cos y = \frac{1}{2} [\sin(x - y) + \sin(x + y)]$$

1. **15 points** Find the FT of x, and sketch the real and imaginary parts of $X(\omega)$, where

$$\forall t, \quad x(t) = \Pi(t) * \Pi(t) * \sum_{-\infty}^{\infty} \delta(t - 8n).$$

Here $\Pi(t) = 1$ for $|t| \le 1/2$ and 0, else. In your sketch carefully mark the relevant frequencies and magnitudes.

Answer

From Table above the FT of

$$\Pi \leftrightarrow X_1 : \omega \mapsto \frac{\sin(\omega/2)}{\omega/2}$$

From the Table above,

$$t \mapsto \sum_{-\infty}^{\infty} \delta(t - 8n) \leftrightarrow X_2 : \omega \mapsto \frac{2\pi}{8} \sum_{k = -\infty}^{\infty} \delta(\omega - \frac{2\pi k}{8}).$$

By the convolution property,

$$\begin{aligned} x \leftrightarrow X(\omega) &= [X_1(\omega)]^2 X_2(\omega) \\ &= \left[\frac{\sin(\omega/2)}{\omega/2}\right]^2 \frac{2\pi}{8} \sum_k \delta(\omega - \frac{2\pi k}{8}) \\ &= \frac{2\pi}{8} \sum_k \left[\frac{\sin(2\pi k/16)}{2\pi k/16}\right]^2 \delta(\omega - \frac{2\pi k}{8}) \end{aligned}$$

X is a real-valued function, its imaginary part is zero. A sketch of X is shown in figure 1.

Figure 1: Sketch of X in problem 1. Only the positive frequencies are shown, since $X(\omega) = X(-\omega)$.

2. 15 points

(a) Find and sketch the FT of

$$x(t) = \left[\frac{\sin \pi t}{\pi t}\right]^2 e^{-j2\pi \times 10t}.$$

(b) Use Parseval's theorem to find the energy in the signal x.

Answer

From Table above,

$$\Pi(t) \leftrightarrow \frac{\sin \omega/2}{\omega/2}$$

From Table above,

$$\frac{\sin \pi t}{\pi t} \leftrightarrow 2\pi \Pi(-\omega) = 2\pi \Pi(\omega)$$

From Table above, $[x(t)]^2 \leftrightarrow (1/2\pi)(X*X)(\omega),$ so

$$\left[\frac{\sin \pi t}{\pi t}\right]^2 \leftrightarrow \frac{1}{2\pi} (2\pi)^2 (\Pi * \Pi)(\omega) = 2\pi (\Pi * \Pi)(\omega)$$

 $\Pi * \Pi$ has the triangle shaped graph shown in Figure 2.

(a) The FT of x is

$$X(\omega) = 2\pi(\Pi * \Pi)(\omega - 2\pi \times 10)$$

and is sketched in Figure 2.

Figure 2: Sketch of X for problem 2

(b) By Parseval's theorem the energy in x is

$$\int |x(t)|^2 dt = \frac{1}{2\pi} \int |X(\omega)|^2 d\omega = \frac{2}{2\pi} \int_0^{2\pi} \left[\frac{\omega}{2\pi}\right]^2 d\omega = \boxed{\frac{2}{3}}$$

- 3. **10 points** The following statements are either TRUE or FALSE. If you believe a statement is true, outline a BRIEF PROOF. If you believe it is false, provide a BRIEF COUNTEREXAMPLE.
 - (a) If $x(t), t \in Reals$, is a real-valued signal, its Fourier transform $X(f), f \in Reals$, is also real-valued.
 - (b) If x(t), y(t), t ∈ Reals, are real-valued signals and (x * y)(t) = 0, ∀t ∈ Reals, then either x or y is identically zero.
 - (c) If $x(t), t \in Reals$, is a real-valued, baseband signal with bandwidth W Hz, then the signal y, $y(t) = x^4(t), t \in Reals$, has bandwidth at most 4W Hz.
 - (d) If $x(t), t \in Reals$ is a real-valued, band-limited signal with bandwidth W Hz, then the signal $y(t) = x(2t), t \in Reals$, has bandwidth W^2 Hz.
 - (e) If x, y are real-valued signals with bandwidth W_x, W_y Hz, respectively, then the signal x + y has bandwidth $W_x + W_y$ Hz.

Answer

- (a) FALSE. The function $\forall t, x(t) = \text{sgn}(t)$ is real-valued, but its Fourier transform is $\forall \omega, X(\omega) = \frac{2}{i\omega}$ which is not real-valued.
- (b) FALSE. Take a band-limited signal x for example, $x(t) = \sin(t)/t$ has bandwidth 1 radian/sec, so $|X(\omega)| = 0$, $|\omega| > 1$. Now take $y(t) = x(t)\cos(10t)$. Then $Y(\omega) = 1/2[X(\omega-10)+X(\omega+10)]$. It follows that $X(\omega)Y(\omega) = 0$ for all ω . But then (x * y)(t) = 0 for all t, even though neither x nor y is identically zero.
- (c) TRUE. $y \leftrightarrow Y = X * X * X * X$. If X(f) = 0 for |f| > W, then X * X * X * X(f) = 0 for |f| > 4W.
- (d) |FALSE| From the time scale property, Y(f) = 1/2X(f/2). So the bandwidth of y is $2W \neq W^2$, if $W \neq 2$.
- (e) FALSE. Take y = x. Then $x + y \leftrightarrow 2X$ has bandwidth W_x .

- 4. **15 points** The following statements are either TRUE or FALSE. If you believe a statement is true, outline a BRIEF PROOF. If you believe it is false, provide a BRIEF COUNTEREXAMPLE.
 - (a) The system that takes as input a signal m and produces its Hilbert transform \hat{m} as output is an LTI system.
 - (b) The SSB-USB modulator which takes as input a signal $m(t), t \in Reals$, and produces as output the modulated signal $x(t), t \in Reals$, is a linear system.
 - (c) The narrow-band FM system which takes as input the continuous-time signal m and produces as output the modulated signal x, is a linear system.
 - (d) The AM-DSB modulator is a time-invariant system.
 - (e) The signal $\forall t, x(t) = \cos(2\pi f_c t + \cos(2\pi f_m t))$ has infinite bandwidth.
 - (f) It is possible to recover the signals A and θ from the narrowband signal $\forall t, x(t) = A(t) \cos(2\pi f_c t + \theta(t))$.

Answer

- (a) | TRUE |, because $\hat{m} = m * h$ where h is the impulse response of the Hilbert transform.
- (b) TRUE, because

$$\begin{aligned} \forall t, \quad x(t) &= \quad [m(t) + j\hat{m}(t)]e^{j\omega_c t}, \\ &= \quad (m*(\delta+jh))(t)e^{j\omega_c t}. \end{aligned}$$

(where h is as in part (a)) and the operations above are linear.

(c) FALSE, because the signal x is

$$\forall t, \quad x(t) = \cos 2\pi f_c t - m(t) \sin 2\pi f_c t,$$

and this is not a linear relation: for example $x \neq 0$ even if $m(t) \equiv 0$.

(d) FALSE . The modulator is a linear, memoryless, *time-varying* system:

$$x(t) = m(t)\cos 2\pi f_c t.$$

(e) TRUE. The signal is periodic in t with period $1/f_m$ since $x(t + 1/f_m) = \cos(\cos(2\pi f_m(t + 1/f_m))) = \cos(\cos(2\pi f_m t))$. It is also an even function of t. Hence x has a Fourier series representation

$$x(t) = \sum_{k=0}^{\infty} a_k \cos(k2\pi f_m t),$$

which has infinite bandwidth.

(f) TRUE Construct the signal z by

$$\forall t, \quad z(t) = [x(t) + j\hat{x}(t)]e^{-j2\pi f_c t},$$

where \hat{x} is the Hilbert transform of x. Then $z(t) = A(t)e^{j\theta(t)}$, so A(t) = |z(t)| and $\theta(t) = \angle z(t)$.

5. 20 points Figure 3 is a block diagram of vestigial sideband (VSB) modulation/demodulation. The

Figure 3: The VSB modulation-demodulation scheme of problem 5

baseband signal m has FT M as shown, with bandwidth B rad/sec. It modulates the carrier $\cos(\omega_c t)$ $(\omega_c >> B)$ to produce the signal u, which is passed through the VSB filter, whose frequency response $H(\omega)$ is shown. The result is the transmitted signal v. The coherent receiver multiples v by the carrier to produce w, which is then passed through a low pass filter (LPF) to obtain the signal x.

- (a) Sketch the FT of u, v, and w. Carefully mark relevant magnitudes and frequencies.
- (b) Show that x = (1/4)m if the VSB filter satisfies

$$H(\omega + \omega_c) + H(\omega - \omega_c) = 1$$
, for $|\omega| \le B$

Answer We have

Figure 4: The FTs for problem 5

$$\begin{split} U(\omega) &= \frac{1}{2} [M(\omega - \omega_c) + M(\omega + \omega_c)], \quad V(\omega) = \frac{1}{2} H(\omega) [M(\omega - \omega_c) + M(\omega + \omega_c)] \\ W(\omega) &= \frac{1}{2} [V(\omega - \omega_c) + V(\omega + \omega_c)] \\ &= \frac{1}{4} \Big[H(\omega - \omega_c) \{M(\omega - 2\omega_c) + M(\omega)\} + H(\omega - \omega_c) \{M(\omega) + M(\omega + 2\omega_c)\} \Big] \\ &= \frac{1}{4} M(\omega) [H(\omega - \omega_c) + H(\omega + \omega_c)], \text{ for } |\omega| < B \end{split}$$

Figure 4 shows the FTs for (a). Part (b) follows from the last equation.

Figure 5: The communication system for problem 5

at its input port any symbol from $\{a, b, c, d, e\}$ and delivers it at its output port. The channel can accept one symbol every 2μ sec.

- (a) What is the baud rate of the channel? What is its capacity in bits/sec?
- (b) A binary source m produces data at 1Mb/sec. (1 Mb is one million bits.) Is the rate of the source smaller than the capacity? If it is, construct a "coder" that maps the binary source m into a sequence of symbols x, and a "decoder" that maps x into a binary sequence m' such that m' = m.

Answer

- (a) The baud rate is $1/(2 \times 10^{-6}) = 500,000$ symbols/sec. The channel capacity is $C = \log_2(5) \times 500,000$ bps.
- (b) Yes. $C > 10^6$, since $\log_2(5) > \log_2 4 = 2$.

The coder should map pairs of bits into distinct symbols, the decoder should do the inverse. They are given by the following assignments:

Coder :
$$00 \rightarrow a$$
; $01 \rightarrow b$; $10 \rightarrow c$; $11 \rightarrow d$
Decoder : $a \rightarrow 00$; $b \rightarrow 01$; $c \rightarrow 10$; $d \rightarrow 11$

- 7. 20 points m is a complex-valued signal with bandwidth B_m rad/sec whose real and imaginary parts are m_1, m_2 respectively. Let $M(\omega), M_1(\omega)$ and $M_2(\omega)$ be the FT of m, m_1 and m_2 , respectively.
 - (a) Find M_1 and M_2 in terms of M. Show that the bandwidth of m_1, m_2 is at most B_m .
 - (b) Design a modulation and demodulation scheme that can transmit m_1 and m_2 over a channel with bandwidth $2B_m$ centered at frequency ω_c rad/sec.
 - (c) Give a brief mathematical argument to show that the transmitted signal is within the channel bandwidth, and that the receiver can recover both signals.

Answer

(a) $M(\omega) = \int m(t)e^{-j\omega t}dt$; $M^*(\omega) = \int m^*(t)e^{j\omega t}dt$; $M^*(-\omega) = \int m^*(t)e^{-j\omega t}dt$. Since $m + m^* = 2m_1$ and $m - m^* = 2jm_2$,

$$M(\omega) + M^*(-\omega) = \int [m(t) + m^*(t)]e^{-j\omega t}dt = 2M_1(\omega)$$
$$M(\omega) - M^*(-\omega) = \int [m(t) - m^*(t)]e^{-j\omega t}dt = 2jM_2(\omega)$$

(b) The modulated signal is

$$x(t) = m_1(t)\cos(\omega_c t) + m_2(t)\sin(\omega_c t).$$

To recover the signals we use coherent demodulation. Multiply x by $\cos \omega_c t$ and pass the product through a LPF with cutoff B_m to recover m_1 ; multiply x by $\sin \omega_c t$ and pass the product through a LPF with cutoff B_m Hz to recover m_2 .

(c) We have

$$\begin{aligned} x(t) &\leftrightarrow X(\omega) \\ &= M_1(\omega) * \frac{1}{2} [\delta(\omega - \omega_c) + \delta(\omega + \omega_c)] + M_2(\omega) \frac{1}{2j} [\delta(\omega - \omega_c) - \delta(\omega + \omega_c)] \\ &= \frac{1}{2} [M_1(\omega - \omega_c) + M_1(\omega + \omega_c)] + \frac{1}{2j} [M_2(\omega - \omega_c) - M_2(\omega + \omega_c)], \end{aligned}$$

which shows that $|X(\omega)| = 0$, $||\omega| - \omega_c| > B_m$. To show that the demodulation scheme works:

$$\begin{split} x(t)\cos(2\pi f_c t) &= m_1(t)\cos^2(\omega_c t) + m_2(t)\sin(\omega_c t)\cos(\omega_c t) \\ &= \frac{1}{2}[m_1(t) + m_1(t)\cos(2\omega_c t)] + \frac{1}{2}m_2(t)\sin(2\omega_c t) \\ &\to \frac{1}{2}m_1(t) \text{ after passing through LPF,} \end{split}$$

and similarly,

$$\begin{aligned} x(t)\sin(\omega_c t) &= m_1(t)\cos(\omega_c t)\sin(\omega_c t) + m_2(t)\sin^2(\omega_c t) \\ &= \frac{1}{2}m_1(t)\sin(2\omega_c t) + \frac{1}{2}[m_2(t) - m_2(t)\cos(2\omega_c t)] \\ &\to \frac{1}{2}m_2(t) \text{ after passing through LPF.} \end{aligned}$$