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Q1. [10 pts] All Searches Lead to the Same Destination
For all the questions below assume :

• All search algorithms are graph search (as opposed to tree search).

• cij > 0 is the cost to go from node i to node j.

• There is only one goal node (as opposed to a set of goal nodes).

• All ties are broken alphabetically.

• Assume heuristics are consistent.

Definition: Two search algorithms are defined to be equivalent if and only if they expand the same nodes in the
same order and return the same path.

In this question we study what happens if we run uniform cost search with action costs dij that are potentially
different from the search problem’s actual action costs cij . Concretely, we will study how this might, or might not,
result in running uniform cost search (with these new choices of action costs) being equivalent to another search
algorithm.

(a) [2 pts] Mark all choices for costs dij that make running Uniform Cost Search algorithm with these costs dij
equivalent to running Breadth-First Search.

# dij = 0

# dij = α, α > 0

# dij = α, α < 0

# dij = 1

# dij = −1

# None of the above

(b) [2 pts] Mark all choices for costs dij that make running Uniform Cost Search algorithm with these costs dij
equivalent to running Depth-First Search.

# dij = 0

# dij = α, α > 0

# dij = α, α < 0

# dij = 1

# dij = −1

# None of the above
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(c) [2 pts] Mark all choices for costs dij that make running Uniform Cost Search algorithm with these costs dij
equivalent to running Uniform Cost Search with the original costs cij .

# dij = c2ij

# dij = 1/cij

# dij = α cij , α > 0

# dij = cij + α, α > 0

# dij = α cij + β, α > 0, β > 0

# None of the above

(d) Let h(n) be the value of the heuristic function at node n.

(i) [2 pts] Mark all choices for costs dij that make running Uniform Cost Search algorithm with these
costs dij equivalent to running Greedy Search with the original costs cij and heuristic function h.

# dij = h(i)− h(j)

# dij = h(j)− h(i)

# dij = α h(i), α > 0

# dij = α h(j), α > 0

# dij = cij + h(j) + h(i)

# None of the above

(ii) [2 pts] Mark all choices for costs dij that make running Uniform Cost Search algorithm with these
costs dij equivalent to running A* Search with the original costs cij and heuristic function h.

# dij = α h(i), α > 0

# dij = α h(j), α > 0

# dij = cij + h(i)

# dij = cij + h(j)

# dij = cij + h(i)− h(j)

# dij = cij + h(j)− h(i)

# None of the above
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Q2. [18 pts] Dynamic A∗ Search
After running A∗ graph search and finding an optimal path from start to goal, the cost of one of the edges, X → Y ,
in the graph changes. Rather than re-running the entire search, you want to find a more efficient way of finding the
optimal path for this new search problem.

You have access to the fringe, the closed set and the search tree as they were at the completion of the initial
search. In addition, you have a closed node map that maps a state, s from the closed set to a list of nodes in the
search tree ending in s which were not expanded because s was already in the closed set.

For example, after running A∗ search with the null heuristic on the following graph, the data structures would be as
follows:

Fringe: {} Closed Node Map: {A:[ ], B:[ ], C:[ ], D:[(A-C-D, 6)]}

Closed Set: {A, B, C, D} Search Tree: {A : [(A-B, 1), (A-C, 4)],
A-B : [(A-B-D, 2)],
A-C : [ ],
A-B-D : [(A-B-D-G, 7)],
A-B-D-E : [ ]}

For a general graph, for each of the following scenarios, select the choice that finds the correct optimal path and cost
while expanding the fewest nodes. Note that if you select the 4th choice, you must fill in the change, and if you select
the last choice, you must describe the set of nodes to add to the fringe.

In the answer choices below, if an option states some nodes will be added to the fringe, this also implies that the
final state of each node gets cleared out of the closed set (indeed, otherwise it’d be rather useless to add something
back into the fringe). You may assume that there are no ties in terms of path costs.

Following is a set of eight choices you should use to answer the questions on the following page.

i. The optimal path does not change, and the cost remains the same.
ii. The optimal path does not change, but the cost increases by n
iii. The optimal path does not change, but the cost decreases by n
iv. The optimal path does not change, but the cost changes by
v. The optimal path for the new search problem can be found by adding the subtree rooted at X that was

expanded in the original search back onto the fringe and re-starting the search.
vi. The optimal path for the new search problem can be found by adding the subtree rooted at Y that was

expanded in the original search back onto the fringe and re-starting the search.
vii. The optimal path for the new search problem can be found by adding all nodes for each state in the closed

node map back onto the fringe and re-starting the search.
viii. The optimal path for the new search problem can be found by adding some other set of nodes back onto

the fringe and re-starting the search. Describe the set below.
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(a) [3 pts] Cost of X → Y is increased by n, n > 0, the edge is on the optimal path, and was explored by the first
search.
# i # ii # iii # iv, Change:
# v # vi # vii # viii, Describe the set below:

(b) [3 pts] Cost of X → Y is decreased by n, n > 0, the edge is on the optimal path, and was explored by the first
search.
# i # ii # iii # iv, Change:
# v # vi # vii # viii, Describe the set below:

(c) [3 pts] Cost of X → Y is increased by n, n > 0, the edge is not on the optimal path, and was explored by the
first search.
# i # ii # iii # iv, Change:
# v # vi # vii # viii, Describe the set below:

(d) [3 pts] Cost of X → Y is decreased by n, n > 0, the edge is not on the optimal path, and was explored by the
first search.
# i # ii # iii # iv, Change:
# v # vi # vii # viii, Describe the set below:

(e) [3 pts] Cost of X → Y is increased by n, n > 0, the edge is not on the optimal path, and was not explored by
the first search.
# i # ii # iii # iv, Change:
# v # vi # vii # viii, Describe the set below:

(f) [3 pts] Cost of X → Y is decreased by n, n > 0, the edge is not on the optimal path, and was not explored by
the first search.
# i # ii # iii # iv, Change:
# v # vi # vii # viii, Describe the set below:
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Q3. [16 pts] CSPs
(a) The graph below is a constraint graph for a CSP that has only binary constraints. Initially, no variables have

been assigned.

For each of the following scenarios, mark all variables for which the specified filtering might result in their
domain being changed.

(i) [1 pt] A value is assigned to A. Which domains might be changed as a result of running forward checking
for A?
# A # B # C # D # E # F

(ii) [1 pt] A value is assigned to A, and then forward checking is run for A. Then a value is assigned to B.
Which domains might be changed as a result of running forward checking for B?
# A # B # C # D # E # F

(iii) [1 pt] A value is assigned to A. Which domains might be changed as a result of enforcing arc consistency
after this assignment?
# A # B # C # D # E # F

(iv) [1 pt] A value is assigned to A, and then arc consistency is enforced. Then a value is assigned to B. Which
domains might be changed as a result of enforcing arc consistency after the assignment to B?
# A # B # C # D # E # F

(b) You decide to try a new approach to using arc consistency in which you initially enforce arc consistency, and
then enforce arc consistency every time you have assigned an even number of variables.

You have to backtrack if, after a value has been assigned to a variable, X, the recursion returns at X without a
solution. Concretely, this means that for a single variable with d values remaining, it is possible to backtrack
up to d times. For each of the following constraint graphs, if each variable has a domain of size d, how many
times would you have to backtrack in the worst case for each of the specified orderings?

(i) [6 pts]

A-B-C-D-E:

A-E-B-D-C:

C-B-D-E-A:

(ii) [6 pts]

A-B-C-D-E-F-G:

F-D-B-A-C-G-E:

C-A-F-E-B-G-D:
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Q4. [15 pts] Variants of Trees
(a) Pacman is going to play against a careless ghost, which makes a move that is optimal for Pacman 1

3 of the
time, and makes a move that that minimizes Pacman’s utility the other 2

3 of the time.

(i) [2 pts] Fill in the correct utility values in the game tree below where Pacman is the maximizer:

(ii) [2 pts] Draw a complete game tree for the game above that contains only max nodes, min nodes, and
chance nodes.
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(b) Consider a modification of alpha-beta pruning where, rather than keeping track of a single value for α and β,
you instead keep a list containing the best value, wi, for the minimizer/maximizer (depending on the level) at
each level up to and including the current level. Assume that the root node is always a max node. For example,
consider the following game tree in which the first 3 levels are shown. When the considering the right child of
the node at level 3, you have access to w1, w2, and w3.

(i) [1 pt] Under this new scenario, what is the pruning condition for a max node at the nth level of the tree
(in terms of v and w1...wn)?

(ii) [1 pt] What is the pruning condition for a min node at the nth level of the tree?

(iii) [2 pts] What is the relationship between α, β and the list of w1...wn at a max node at the nth level of the
tree?

# ∑
i wi = α+ β

# maxiwi = α, miniwi = β
# miniwi = α, maxiwi = β
# wn = α, wn−1 = β
# wn−1 = α, wn = β
# None of the above. The relationship is
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(c) Pacman is in a dilemma. He is trying to maximize his overall utility in a game, which is modeled as the
following game tree.

The left subtree contains a utility of 12. The right subtree contains an unknown utility value. An oracle has
told you that the value of the right subtree is one of −3, −9, or 21. You know that each value is equally likely,
but without exploring the subtree you do not know which one it is.

Now Pacman has 3 options:

1. Choose left;

2. Choose right;

3. Pay a cost of c = 1 to explore the right subtree, determine the exact utility it contains, and then make a
decision.

(i) [3 pts] What is the expected utility for option 3?

(ii) [4 pts] For what values of c (for example, c > 5 or −2 < c < 2) should Pacman choose option 3? If option
3 is never optimal regardless of the value for c, write None.
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Q5. [10 pts] More Games and Utilities
(a) Games. Consider the game tree below, which contains maximizer nodes, minimizer nodes, and chance nodes.

For the chance nodes the probability of each outcome is equally likely.

(i) [3 pts] Fill in the values of each of the nodes.

(ii) [4 pts] Is pruning possible?

# No. Brief justification:

# Yes. Cross out the branches that can be pruned.

20 

16 10 

40 

60 

12 8 

50 

(b) Utilities. Pacman’s utility function is U($x) =
√
x. He is faced with the following lottery: [0.5, $36 ; 0.5, $64].

Compute the following quantities:

(i) [1 pt] What is Pacman’s expected utility?

EU([0.5, $36 ; 0.5, $64]) =

(ii) [1 pt] What is Equivalent Monetary Value for this lottery?

EMV ([0.5, $36 ; 0.5, $64]) =

(iii) [1 pt] What is the maximum amount Pacman would be willing to pay for an insurance that guarantees
he gets $64 in exchange for giving his lottery to the insurance company?

11



Q6. [9 pts] Faulty Keyboard
Your new wireless keyboard works great, but when the battery runs out it starts behaving strangely. All keys other
than {a, b, c} stop working. The {a, b, c} keys work as intended with probability 0.8, but could also produce either of
the other two different characters with probability 0.1 each. For example, pressing a will produce ‘A’ with probability
0.8, ‘B’ with probability 0.1, and ‘C’ with probability 0.1. After 11 key presses the battery is completely drained
and no new characters can be produced.

The näıve state space for this problem consists of three states {A,B,C} and three actions {a, b, c}.

For each of the objectives below specify a reward function on the näıve state space such that the optimal policy in
the resulting MDP optimizes the specified objective. The reward can only depend on current state, current action,
and next state; it cannot depend on time.

If no such reward function exist, then specify how the näıve state space needs to be expanded and a reward function
on this expanded state space such that the optimal policy in the resulting MDP optimizes the specified objective.
The size of the extended state space needs to be minimal. You may assume that γ = 1.

(a) [3 pts] Produce as many B’s as possible before the first C.

# R(s, a, s′) =

# The state-space needs to be extended to include:

Reward function over extended state space:

(b) [3 pts] Produce a string where the number of B’s and the number of C’s are as close as possible.

# R(s, a, s′) =

# The state-space needs to be extended to include:

Reward function over extended state space:

(c) [3 pts] Produce a string where the first character re-appears in the string as many times as possible.

# R(s, a, s′) =

# The state-space needs to be extended to include:

Reward function over extended state space:
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Q7. [8 pts] Deep inside Q-learning
Consider the grid-world given below and an agent who is trying to learn the optimal policy. Rewards are only
awarded for taking the Exit action from one of the shaded states. Taking this action moves the agent to the Done
state, and the MDP terminates. Assume γ = 1 and α = 0.5 for all calculations. All equations need to explicitly
mention γ and α if necessary.

(a) [3 pts] The agent starts from the top left corner and you are given the following episodes from runs of the agent
through this grid-world. Each line in an Episode is a tuple containing (s, a, s′, r).

Episode 1 Episode 2 Episode 3 Episode 4 Episode 5
(1,3), S, (1,2), 0 (1,3), S, (1,2), 0 (1,3), S, (1,2), 0 (1,3), S, (1,2), 0 (1,3), S, (1,2), 0
(1,2), E, (2,2), 0 (1,2), E, (2,2), 0 (1,2), E, (2,2), 0 (1,2), E, (2,2), 0 (1,2), E, (2,2), 0
(2,2), E, (3,2), 0 (2,2), S, (2,1), 0 (2,2), E, (3,2), 0 (2,2), E, (3,2), 0 (2,2), E, (3,2), 0
(3,2), N, (3,3), 0 (2,1), Exit, D, -100 (3,2), S, (3,1), 0 (3,2), N, (3,3), 0 (3,2), S, (3,1), 0
(3,3), Exit, D, +50 (3,1), Exit, D, +30 (3,3), Exit, D, +50 (3,1), Exit, D, +30

Fill in the following Q-values obtained from direct evaluation from the samples:

Q((3,2), N) = Q((3,2), S) = Q((2,2), E) =

(b) [3 pts] Q-learning is an online algorithm to learn optimal Q-values in an MDP with unknown rewards and
transition function. The update equation is:

Q(st, at) = (1− α)Q(st, at) + α(rt + γmax
a′

Q(st+1, a
′))

where γ is the discount factor, α is the learning rate and the sequence of observations are (· · · , st, at, st+1, rt, · · · ).
Given the episodes in (a), fill in the time at which the following Q values first become non-zero. Your answer
should be of the form (episode#,iter#) where iter# is the Q-learning update iteration in that episode. If
the specified Q value never becomes non-zero, write never.

Q((1,2), E) = Q((2,2), E) = Q((3,2), S) =

(c) [2 pts] In Q-learning, we look at a window of (st, at, st+1, rt) to update our Q-values. One can think of using
an update rule that uses a larger window to update these values. Give an update rule for Q(st, at) given the
window (st, at, rt, st+1, at+1, rt+1, st+2).

Q(st, at) =

Q(st, at) =

Q(st, at) =
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Q8. [14 pts] Bellman Equations for the Post-Decision State
Consider an infinite-horizon, discounted MDP (S,A, T,R, γ). Suppose that the transition probabilities and the
reward function have the following form:

T (s, a, s′) = P (s′|f(s, a))

R(s, a, s′) = R(s, a)

Here, f is some deterministic function mapping S × A → Y , where Y is a set of states called post-decision states.
We will use the letter y to denote an element of Y , i.e., a post-decision state. In words, the state transitions consist
of two steps: a deterministic step that depends on the action, and a stochastic step that does not depend on the
action. The sequence of states (st), actions (at), post-decision-states (yt), and rewards (rt) is illustrated below.

(s0, a0) y0 (s1, a1) y1 (s2, a2) · · ·

r0 r1 r2

f P f P f

You have learned about V π(s), which is the expected discounted sum of rewards, starting from state s, when acting
according to policy π.

V π(s0) = E
[
R(s0, a0) + γR(s1, a1) + γ2R(s2, a2) + . . .

]
given at = π(st) for t = 0, 1, 2, . . .

V ∗(s) is the value function of the optimal policy, V ∗(s) = maxπ V
π(s).

This question will explore the concept of computing value functions on the post-decision-states y. 1

Wπ(y0) = E
[
R(s1, a1) + γR(s2, a2) + γ2R(s3, a3) + . . .

]
We define W ∗(y) = maxπW

π(y).

(a) [2 pts] Write W ∗ in terms of V ∗.
W ∗(y) =

# ∑
s′ P (s′

∣∣ y)V ∗(s′)

# ∑
s′ P (s′

∣∣ y)[V ∗(s′) + maxaR(s′, a)]

# ∑
s′ P (s′

∣∣ y)[V ∗(s′) + γmaxaR(s′, a)]

# ∑
s′ P (s′

∣∣ y)[γV ∗(s′) + maxaR(s′, a)]

# None of the above

(b) [2 pts] Write V ∗ in terms of W ∗.
V ∗(s) =

# maxa[W ∗(f(s, a))]

# maxa[R(s, a) +W ∗(f(s, a))]

# maxa[R(s, a) + γW ∗(f(s, a))]

# maxa[γR(s, a) +W ∗(f(s, a))]

# None of the above

1In some applications, it is easier to learn an approximate W function than V or Q. For example, to use reinforcement learning to
play Tetris, a natural approach is to learn the value of the block pile after you’ve placed your block, rather than the value of the pair
(current block, block pile). TD-Gammon, a computer program developed in the early 90s, was trained by reinforcement learning to play
backgammon as well as the top human experts. TD-Gammon learned an approximate W function.
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(c) [4 pts] Recall that the optimal value function V ∗ satisfies the Bellman equation:

V ∗(s) = max
a

∑
s′

T (s, a, s′) (R(s, a) + γV ∗(s′)) ,

which can also be used as an update equation to compute V ∗.

Provide the equivalent of the Bellman equation for W ∗.

W ∗(y) =

(d) [3 pts] Fill in the blanks to give a policy iteration algorithm, which is guaranteed return the optimal policy π∗.

• Initialize policy π(1) arbitrarily.

• For i = 1, 2, 3, . . .

– Compute Wπ(i)

(y) for all y ∈ Y .

– Compute a new policy π(i+1), where π(i+1)(s) = arg max
a

(1) for all s ∈ S.

– If (2) for all s ∈ S, return π(i).

Fill in your answers for blanks (1) and (2) below.

(1) # Wπ(i)

(f(s, a))

# R(s, a) +Wπ(i)

(f(s, a))

# R(s, a) + γWπ(i)

(f(s, a))

# γR(s, a) +Wπ(i)

(f(s, a))

# None of the above

(2)

(e) [3 pts] In problems where f is known but P (s′|y) is not necessarily known, one can devise reinforcement
learning algorithms based on the W ∗ and Wπ functions. Suppose that an the agent goes through the following
sequence of states, actions and post-decision states: st, at, yt, st+1, at+1, yt+1. Let α ∈ (0, 1) be the learning
rate parameter.

Write an update equation analogous to Q-learning that enables one to estimate W ∗

W (yt)← (1− α)W (yt) + α ( )
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