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EECS 16B Designing Information Devices and Systems II
Fall 2019 UC Berkeley Final Exam

Exam location: Proctoring Office

PRINT your student ID:

PRINT AND SIGN your name: ,
(first and last) (signature)

PRINT your discussion section and GSI(s) (the one(s) you attend):

Row Number (front row is 1): Seat Number (left most is 1):
Name and SID of the person to your left:

Name and SID of the person to your right:

Name and SID of the person in front of you:

Name and SID of the person behind you:

Section 0: Pre-exam questions (4 points)

1. Tell us about something you are proud of this semester. (2 pt)

2. What are you looking forward to in winter break? Describe how you will feel. (2 pts)

Do not turn this page until the proctor tells you to do so. You can work on Section 0 above before time starts.
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PRINT your name and student ID:

3. Transistor Behavior (12 pts)

For all NMOS devices in this problem, Vtn = 0.5V. For all PMOS devices in this problem, |Vt p|= 0.6V.

(a) (4 pts) Which is the equivalent circuit for the right-hand side of the circuit? Fill in the correct bubble.

−
+1V

−
+ 2V

Ron, N

−
+ 2V

Circuit A

Ron, N

−
+ 2V

Circuit B

A B
Equivalent Circuit © ©

Solution: For the NMOS, VGS = 1V >Vtn = 0.5V , so the NMOS transistor is on.
Thus circuit B is equivalent.

(b) (4 pts) Which is the equivalent circuit for the right-hand side of the circuit? Fill in the correct bubble.

−
+0.4V

RL

−
+ 2V
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RL

−
+ 2V

Circuit A

RL

Ron,P

−
+ 2V

Circuit B

RL

Ron,P

−
+ 2V

Circuit C

A B C
Equivalent Circuit © © ©

Solution: For the PMOS transistor, |VGS|= 1.6V > |Vt p|= 0.6V , so the PMOS transistor is on.
Thus circuit C is equivalent.

(c) (4 pts) Which is the equivalent circuit for the right-hand side of the circuit? Fill in the correct bubble.

−
+0.7V

−
+ 2V
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Ron,N

Ron,P

−
+ 2V

Circuit A

Ron,N

Ron,P

−
+ 2V

Circuit B

Ron,N

Ron,P

−
+ 2V

Circuit C

Ron,N

Ron,P

−
+ 2V

Circuit D

A B C D
Equivalent Circuit © © © ©

Solution: For the PMOS transistor, |VGS|= 1.3V > |Vt p|= 0.6V , so the PMOS transistor is on. For
the NMOS transistor, VGS = 0.7V >Vtn = 0.5V , so the NMOS transistor is on.
Note that in this case, both transistors are on.
Thus circuit D is equivalent.
Aside: In digital logic, it is usually undesirable to have this state in your system for several reasons.
First, the output voltage of the inverter (the voltage at the shared drain of the NMOS and PMOS) will
not be either 0 or V DD, which means the output voltage is not at ‘true’ binary value. In addition, we
now have a direct current path through the NMOS and PMOS transistors from VDD to ground. This
will burn a lot of power! In reality, all inverters briefly transition through this state where both NMOS
and PMOS are on when the inputs change from 1 to 0 or 0 to 1.
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4. Filter Design and Bode Plots (28 pts)

On the Bode plots below, we have plotted the magnitude responses of first-order low pass filters and high
pass filters using the example of cutoff frequency ω0 = 106.
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Lowpass Bode Plot (ω0 = 106)
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Highpass Bode Plot (ω0 = 106)

Recall that the transfer functions for such simple low pass filters and high pass filters are:

Hlowpass( jω) =
1

1+ jω
ω0

; Hhighpass( jω) =

jω
ω0

1+ jω
ω0

.

(a) (6 pts) We want to design a bandpass filter that can pass through a 2.4GHz WiFi signal while blocking
other interfering signals — FM radio at 100MHz and WiGig at 60GHz. (Recall: Mega = 106 and Giga
= 109.) We will achieve this by cascading lowpass and highpass filters, using ideal op-amp buffers in
between to prevent any loading effects.
Unfortunately, when we look in the lab, we only see inductors, 1kΩ resistors, and op-amps.
We will start by cascading a single highpass filter followed by a single lowpass filter, with an op-amp
buffer in between. Using only op-amps, two inductors, and resistors (as many as needed), draw
the full band-pass filter. Label Vin and Vout and label the two inductors with L1 and L2. Do not worry
about picking the values for L1 and L2 in this part.

Solution:
The band-pass filter is drawn below.
Important notes:

• All resistors are 1kΩ

• An op-amp in unity-gain configuration (input to the + port, output fed back to the − port) sepa-
rates the HPF from the LPF
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(b) (8 pts) One interfering signal that we want to block is the WiGig signal at 60GHz. If we want to atten-
uate/reduce the magnitude of the WiGig signal by a factor of about

√
101≈ 10, What is a candidate

‘cutoff frequency’ (in Hz) desired for this lowpass filter?

What inductance value should we use for the lowpass filter? Recall that we only have resistors with
1kΩ resistance. It is fine to give your inductance as a formula — you don’t have to simplify it.
For your convenience, here are some calculations that may or may not be relevant:

60×109

2π
= 9.549×109 2.4×109

2π
= 382×106 100×106

2π
= 15.9×106

60×109×2π = 377×109 2.4×109×2π = 15.08×109 100×106×2π = 628×106

(HINT: Look at the relevant Bode plot and read off how far away in frequency from ω0 you need to be
to reduce the magnitude by the desired factor of around 10.)

Solution: From the Bode plot, we see that to attenuate a particular frequency by 10x, the cutoff
frequency must be 10x lower.
Because we are interested in attenuating fWiGig = 60GHz by 10x, we find that the cutoff frequency (in
Hz) must be f0 =

1
10 fWiGig = 6GHz.

Recall that the transfer function for a LR lowpass filter (derived using the phasor-domain voltage
divider) is

H( jω) =
1

1+ jω
ω0

=
R

R+ jωL
=

1
1+ jω

R
L

This indicates that ω0 =
R
L . Thus

L =
R
ω0

=
1kΩ

2π ·6×109Hz
=

1
12π×106 ≈

1
377×105 ≈ 26.5nH

(c) (14 pts) Another interfering signal that we want to block is FM radio at 100MHz and we want to reduce
its magnitude by a factor of around 100. We decide to use multiple highpass filters in a row (separated
by ideal op-amp buffers) to attenuate the FM radio signal more strongly. We design the system with
the highpass filter cutoff frequencies all at 1GHz. In this case, what inductor value should each of
the highpass filters use? Recall that we only have resistors with 1kΩ resistance. It is fine to give your
inductance as a formula — you don’t have to simplify it.
For your convenience, here are some calculations that may or may not be relevant:
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60×109

2π
= 9.549×109 2.4×109

2π
= 382×106 100×106

2π
= 15.9×106

60×109×2π = 377×109 2.4×109×2π = 15.08×109 100×106×2π = 628×106

How many highpass filters must we cascade in order to attenuate the FM signal at 100MHz by a
factor of around 100?

Draw the full circuit for your complete filter including op-amp buffers, the lowpass filter, and
the highpass filters.
Solution:
We are given a cutoff frequency of f0 = 1GHz. We can therefore solve for the inductor value:

L =
R
ω0

=
R

2π f0
=

1kΩ

2π1×109Hz
=

1
2π×106 henry≈ 159nH

Because the filter cutoff frequency is 10x higher than the FM radio signal, the FM signal is attenuated
by a factor of roughly 10x by a single filter.
Therefore, to get a factor of 100 attenuation, we must use 2 filters in cascade (each one providing 0x
attenuation, for a total of 100x).
The full band-pass filter is drawn below.
Important notes:

• All resistors are 1kΩ

• An op-amp in unity-gain configuration (input to the + port, output fed back to the − port) sepa-
rates the HPF from the LPF

• L1 = L2 = 159nH for the highpass filters
• L3 = 26.5nH for the lowpass filters
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5. Controllable Canonical Form (26 pts)
Suppose that we have a two-dimensional continuous time system governed by:

d
dt
~x(t) =

[
1 −1
0 −4

]
~x(t)+

[
1
1

]
u(t)

We would like to put this system into Controllable Canonical Form (CCF) to use state feedback to place the

eigenvalues at desired locations. For your convenience, the characteristic polynomial det

λ I−

[
1 −1
0 −4

]=

(λ −1)(λ +4) = λ 2 +3λ −4.

(a) (4 pts) Is the system stable? Why or why not?
Solution: The system is not stable because it has an eigenvalue λ =+1 that has a non-negative real
part. The system will tend to explode along that direction.
The λ =−4 eigenvalue is perfectly stable by contrast.

(b) (16 pts) Recall that our original system is:

d
dt
~x(t) =

[
1 −1
0 −4

]
~x(t)+

[
1
1

]
u(t) with det

λ I−

[
1 −1
0 −4

]= λ
2 +3λ −4.

We would like to change coordinates to bring the system into CCF:

d
dt
~z(t) =

[
0 1
a0 a1

]
~z(t)+

[
0
1

]
u(t)

Compute the T basis such that~z(t) = T−1~x(t) or equivalently (if you want), give us T−1 directly.
To help you along, here are some calculations already done for you:[

1 0
1 −4

]−1

=
1
4

[
4 0
1 −1

]
[

0 1
1 a

]−1

=

[
−a 1
1 0

]
What is a0? What is a1?
Solution:

The characteristic polynomial of

[
0 1
a0 a1

]
is λ 2− a1λ − a0 and since changing coordinates doesn’t

change the characteristic polynomial, we know that a0 = 4 and a1 =−3.

Now, we can compute the controllability matrix for the original system C =

[
1 0
1 −4

]
as well as for

the system that is already in CCF: Cz =

[
0 1
1 −3

]
.
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At this point, we know that the original system’s A matrix in the C basis looks like the transpose of
Az. Since we also know that Cz has the same basic relationship, we know that T =CC−1

z is the basis in
which the original system’s matrix will look like Az. Computing this:

T =CC−1
z =

[
1 0
1 −4

][
0 1
1 −3

]−1

(1)

=

[
1 0
1 −4

][
3 1
1 0

]
(2)

=

[
3 1
−1 1

]
. (3)

We could also compute T−1 if we wanted by the same essential reasoning:

T−1 =CzC−1 =

[
0 1
1 −3

][
1 0
1 −4

]−1

(4)

=

[
0 1
1 −3

]
1
4

[
4 0
1 −1

]
(5)

=
1
4

[
1 −1
1 3

]
. (6)

If we wanted, we could check our work by computing

T−1

[
1 −1
0 −4

]
T =

1
4

[
1 −1
1 3

]
.

[
1 −1
0 −4

][
3 1
−1 1

]
(7)

=
1
4

[
1 −1
1 3

]
.

[
4 0
4 −4

]
(8)

=

[
0 1
4 −3

]
. (9)

And so, this checks out as far as the system matrix goes. We can also see what happens with T−1~b =

1
4

[
1 −1
1 3

][
1
1

]
=

[
0
1

]
which also checks out.

Finally, it is important to note that we can also compute the a0,a1 by computing

C−1A2~b =
1
4

[
4 0
1 −1

][
4
16

]
(10)

=

[
4
−3

]
. (11)

That also works.

(c) (6 pts) Using state feedback

u(t) =
[
k̃0 k̃1

]
~z(t)
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place the closed-loop eigenvalues at λ1 =−1, λ2 =−2. What is k̃0? What is k̃1?
(Notice that we are asking for the feedback gains in terms of~z(t) not the original ~x(t). If you have
time, feel free to check your work by the original~x(t).)

Solution:
The key here is to realize what we want the new characteristic polynomial to be. (λ −λ1)(λ −λ2) =
(λ +1)(λ +2) = λ 2+3λ +2. In CCF form, the coefficients of the characteristic polynomial are visible
on the bottom row. So we need 4+ k̃0 =−2 which means that k̃0 =−6. We also need −3+ k̃1 =−3
which means that k̃1 = 0.

To check our work, we realize that [−6,0]T−1 = [−6,0]1
4

[
1 −1
1 3

]
= [−3

2 ,
3
2 ] are the claimed gains

in the original coordinates. This makes the original coordinate closed-loop matrix be

[
1 −1
0 −4

]
+[

1
1

]
[−3

2 ,
3
2 ] =

[
1− 3

2 −1+ 3
2

0− 3
2 −4+ 3

2

]
=

[
−1

2 +1
2

−3
2 −5

2

]
which has eigenvalues at −2 and −1 as desired since

(λ + 1
2)(λ + 5

2)+
3
4 = λ 2 +3λ + 5

4 +
3
4 = λ 2 +3λ +2.
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6. You knew this was coming (16 pts)

In the last midterm, you began solving a minimum norm problem in which we had a wide matrix A and
wanted to solve A~x =~y while minimizing the norm ‖C~x‖ where C was also a wide matrix. You then focused
on some special cases where certain matrices were assumed to have orthonormal columns. The nonorthonor-
mal case wasn’t resolved. This question is about the heart of what remains to be resolved.

Suppose that we have a matrix A f , but we don’t know whether or not the columns of A f are linearly in-
dependent or orthonormal. How can you use the results from the SVD A f = U f Σ fV>f = ∑

r
i=1 σ f ,i~u f ,i~v>f ,i

to help project a vector ~s onto the subspace spanned by the columns of A f ? Here, the σ f ,1, . . . ,σ f ,r are all
strictly positive. Give an expression for a matrix Pf such that Pf~s is the projection of~s in the subspace
spanned by the columns of A f .

Also give an expression for an~x f so that A f~x f = Pf~s.

Solution: There are multiple ways to approach this problem. If we start with the first part, it is easiest
to see that the columns of U f = [~u f ,1,~u f ,2, · · · ,~u f ,r] form an orthonormal basis for the span of the columns
of A f . This is what the SVD tells us, if we think of the SVD being given to us in the compact form. (The
question didn’t specify explicitly which form. However, pointing out explicitly what you wanted U f to be
is a good idea.) This means that we can project onto this subspace by just using Pf =U fU>f since this is an
orthonormal basis.

The second part also has multiple answers that are valid. One approach is to say that Pf~s is clearly in the
column-span of A f by construction. This means that Gaussian elimination can solve A f~x f = Pf~s and we can
let it pick any solution that it wants to. This is a valid answer, but it doesn’t really give us an expression
strictly speaking.

The approach that most naturally gives us an expression is to look for the minimum norm solution. Here, we
can use the Moore-Penrose Pseudoinverse A†

f = Vf Σ
†
fU
>
f . If you assume that the SVD is given in compact

form, then Σ f is a square r×r matrix and Σ
†
f = Σ

−1
f . The natural thing to write is~x f =A†

f Pf~s=A†
fU fU f>~s=

Vf Σ
†
fU
>
f U fU>f ~s=Vf Σ

†
fU
>
f ~s=Vf Σ

−1
f U>f ~s if we assume the compact form of the SVD for the last step. Here,

we are effectively defining Vf = [~v f ,1,~v f ,2, · · · ,~v f ,r].

Notice that this again verifies the connection between least-squares and the pseudoinverse — the pseudoin-
verse does least-squares when no true solution exists, and among the least-squares solutions, it picks the
minimum norm one.

One can also go from the Pseudoinverse solution to the projection itself by saying that Pf = A f A
†
f which,

when fully substituted, simplifies to just U fU>f assuming the compact form of the SVD because everything
else cancels out.
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PRINT your name and student ID:

7. Movie Ratings and PCA (36 pts)

Recall from the lecture on PCA that we can think of movie ratings as a structured set of data. For every
person i and movie j, we have that person’s rating Ri, j (thought of as a real number).

Suppose that there are m movies and n people. Let’s think about arranging this data into a big n×m matrix
R with people corresponding to rows and movies corresponding to columns. So the entry in the i-th row and
j-th column should be Ri, j above.

(a) (6 pts) Suppose we believe that there is actually an underlying pattern to this rating data and that a
separate study has revealed that every movie is characterized by a set of characteristics: say action and
comedy. This means that every movie j has a pair of numbers a[ j],c[ j] that define it. At the same time,
every person i has a pair of sensitivities sa[i],sc[i] that essentially define that person’s preferences. A
person i will rate the movie j as Ri, j = sa[i]a[ j]+ sc[i]c[ j].
If we arrange the sensitivities into a pair of n-dimensional vectors ~sa,~sc, and the movie characteristics
into a pair of m-dimensional vectors~a,~c, use outer products to express the rating matrix R in terms
of these vectors ~sa,~sc,~a,~c.
Recall that the outer product of a real vector ~u with a real vector ~v is ~u~v> — the reverse order as
compared to the usual inner product.

Solution:
Here R = ~sa~a>+~sc~c>. The ~sa has one entry for every person, and the people are arranged as rows So
to get the sizes to work out, it has to be that we do it in this order. If it helps, imagine that there is
exactly 1 movie. In that case, R is a tall matrix that is only 1 wide. The only tall things we have are ~sa

and ~sb.
The outer product ~sa~a> is therefore a matrix of the same size as R that is filled with sa[i]a[ j] in the
i-th row and j-th column. Similarly ~sc~c> is a matrix of the same size as R that is filled with sc[i]c[ j] in
the i-th row and j-th column. Adding them together gives us a matrix whose i-th row and j-th column
contains Ri, j = sa[i]a[ j]+ sc[i]c[ j] as desired.

(b) (6 pts) Now suppose that we want to discover the underlying nature of movies from the data R itself.
Suppose for this part, that you have four observed rating data vectors (corresponding to four different
movies being rated by six individuals).
All of the movie data vectors just happened to be multiples of the following 6-dimensional vector

~v =



2
−2
3
−4
4
0


. (For your convenience, note that ‖~v‖= 7.)

You arrange the movie data vectors as the columns of a matrix R given by:

R =

−~v −2~v 2~v 4~v

 (12)

You want to perform PCA (for movies) using the SVD of the matrix R to better understand the pattern
in your data.
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The first “principal component vector” is a unit vector that tells which direction we would want to
project the columns of R onto to get the best rank-1 approximation for R.
Find this first principal component vector of R to explain the nature of your movie data points.
(HINT: You don’t need to actually compute any SVDs in this simple case. Also, be sure to think about
what size vector you want as the answer. Don’t forget that you want a unit vector!)

Solution:
Principal component analysis is in general about understanding how best to approximate our (poten-
tially) high-dimensional data (like recordings from a microphone, or in this case, a movie’s ratings by
lots of people) with its lower-dimensional essence. The first principal component is about seeing which
one-dimensional line best approximates the data points — i.e. which is the line for which projecting
the data points onto it results in “estimates” that are as close as possible to the data points.
In the case of this problem, every point is explicitly given as a multiple of a single vector~v and so the
data already lies on such a straight line going through the origin. So, the first principal component is
just along the direction of~v. Because a principal component represents a direction, it is conventional
to normalize the vector to have unit length. In this case, we are told that the vector~v has length 7, and
so the answer is ~v

7 .
(Because the line is all that matters, you could also have used the negative of this −~v

7 .)
We can also do this using the SVD.
The singular value decomposition of a matrix R is a way of decomposing R into a sum of rank 1
matrices. In this sum the ith rank 1 matrix is formed from taking the outer product of normalized
column vectors~ui and normalized row vectors~v>i , scaled by their respective singular values σi.
(Note that the~v>i row vectors in the SVD decomposition A =UΣV> are completely unrelated to the~v
column vector that we have defined for our data matrix A above.)
Looking at our given R, we can see that the matrix itself is rank 1 as the columns are all multiples of
the same vector: ~v. Seeing this we realize we can rewrite the matrix R as the following outer product:

R =

~v
[−1 −2 2 4

]
(13)

However the SVD requires we normalize the vectors ~u1 and ~v>1 . In order to reconstruct A properly we
must scale back with the norms that we divided out to normalize.∥∥[−1,−2,2,4]

∥∥=√25 = 5 and ‖~v‖= 7. Consequently, when we pull that out, we get σ1 = 35 as the
singular value that corresponds to the first (and only) principal component.
Thus we can write the SVD of R as:

R =

~v
7

35
[
−1
5

−2
5

2
5

4
5

]
(14)

Now we just have to pick which normalized vector to deem the principal component. Since our data
(the movie ratings) are collected as columns we choose ~v

7 as the principal component.

© UCB EECS 16B, Fall 2019. All Rights Reserved. This may not be publicly shared without explicit permission. 13



Final Exam @ 2019-12-20 11:31:43-08:00

(c) (12 pts) Suppose that now, we have two more data points (corresponding to two more movies being
rated by the same set of six people) that are multiples of a different vector ~p where:

~p =



6
3
−2
0
0
0


. (For your convenience, note that ‖~p‖= 7 and that ~p>~v = 0.)

We augment our ratings data matrix with these two new data points to get:

R =

−~v −2~v 2~v 4~v −3~p 3~p

 (15)

Find the first two principal components corresponding to the nonzero singular values of R. This is
what we would use to best project the movie data points onto a two-dimensional subspace.
What is the first principal component vector? What is the second principal component vector?
Justify your answer.
(Hint: Think about the inner product of~v and ~p and what that implies for being able to appropriately
decompose R. Again, very little computation is required here.)

Solution: The solution to the previous part tells you what we need to do. We need to find the best
two-dimensional subspace that best represents our data.
We start by taking the SVD of R.
The columns of R are all multiples of two vectors: ~v and ~p. Each of these can be used to create a rank
1 matrix, and these can be summed together to form R.
Since ~v and ~p are orthogonal to one another, our life is easier. This problem’s R matrix is made
especially nice by seeing that a data point is either purely in the~v direction, or the ~p direction.
Using this knowledge we rewrite R as:

R =

~v
[−1 −2 2 4 0 0

]
+

~p
[0 0 0 0 −3 3

]
.

The orthogonality relationships demanded by the SVD are clearly satisfied since the row-vectors in-
volved above have disjoint support (i.e. when one is nonzero, the other is zero) and the columns are
orthogonal since we’ve been told so.
However for the SVD the vectors: ~u1, ~v1

>, ~u2 and ~v2
> must be normalized and each rank 1 matrix

must be scaled by the appropriate σi to allow the sum to properly reconstruct R. We also need to figure
out which σi is bigger so we can order them properly. In the previous part, we have already done the
calculations for ~v’s part in this story. So what remains is the ~p part. Clearly the norm of the relevant
row is 3

√
2 which the norm of the relevant column is 7. So the singular value in question is 21

√
2.

Using this we can rewrite R as:

=

~v
7

35
[
−1
5

−2
5

2
5

4
5 0 0

]
+

~p
7

21
√

2
[
0 0 0 0 −3

3
√

2
3

3
√

2

]
.
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So, what is bigger 35 or 21
√

2? This is the same as asking which is bigger 5 or 3
√

2. Squaring both
tells us that this is the same as asking which is bigger, 25 or 18. Clearly, the first term is larger.
From this we see that our singular values are σ1 = 35 and σ2 = 21

√
2 since 35 > 21

√
2. Thus ~v

7 which
corresponds to σ1 is still the first principal component vector and ~p

7 which corresponds to σ2 is the
second principal component vector.

(d) (12 pts) In the previous part, you had

R =

−~v −2~v 2~v 4~v −3~p 3~p


with ‖~v‖= 7 and ‖~p‖= 7, satisfying ~p>~v = 0.
If we use~ri to denote the i-th column of R, plot the movie data points~ri projected onto the first and
second principal component vectors. The coordinate along the first principal component should be
represented by horizontal axis and the coordinate along the second principal component should be the
vertical axis. Label each point.
Solution:
Once we know what the principal components are, we know that the first four data points are just
multiples of the first principal component and the last two data points are just multiples of the second
principal component. What multiples? For the first four, the multiples are clearly−7,−14,14,28 since
the norm of~v is 7. For the final two, the multiples are clearly −21,+21 since the norm of ~p is also 7.
Plotting:

~v
7

~p
7

•

•

•• • •
~r1~r2 ~r3 ~r4

~r5

~r6

−32 −28 −24 −20 −16 −12 −8 −4 0 4 8 12 16 20 24 28 32

−24

−20

−16

−12

−8

−4

0

4

8

12

16

20

24
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PRINT your name and student ID:

8. Latch (46 pts)

The circuit below is a type of latch, which is one of the fundamental components of memory in many
digital systems. The latch is a bistable circuit, which means that there are two possible stable states: one
representing a stored ‘1’ bit and the other a stored ‘0’ bit.

R

C

R

VDD

C

Vout1 Vout2

Figure 7: Simplified latch: the gate capacitances have been pulled out explicitly.

(a) (6 pts) To get a basic understanding of the stable operating points for the latch, consider the following
simplified circuit using the pure switch model for MOSFETs (and a threshold voltage of VDD

2 ).

Vout2 ≥VDD/2

Vout1

R

Vout1 ≥VDD/2

Vout2

R

VDD

Figure 8: Pure switch model for a latch

First assume that Vout1 = 0. What is Vout2? Are the left and right switches open or closed?

Open or VDD Closed or 0
Left Switch © ©
Right Switch © ©
Vout2 © ©

Solution: If Vout1 = 0, then the switch on the right is open because that transistor is clearly off. (You
can look at the switch model or think about the threshold of VDD/2, either way.) At that point, there
can be no current flowing through the resistor above it, and Vout2 = VDD. Now, we can look at the
switch to the left. It is clearly closed since that transistor is clearly on.
So, the first set of answers should be:

© UCB EECS 16B, Fall 2019. All Rights Reserved. This may not be publicly shared without explicit permission. 16
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Open or VDD Closed or 0
Left Switch ©
Right Switch ©
Vout2 ©

Notice how in this, this is self-fulfilling. Having the left transistor closed means that there is current
in the corresponding resistor and Vout1 is indeed pulled down to 0 since the transistor is being modeled
with no output resistance. So the initial assumption is self-consistent.
Suppose that Vout1 =VDD. What is Vout2? Are the left and right switches open or closed?

Open or VDD Closed or 0
Left Switch © ©
Right Switch © ©
Vout2 © ©

Solution: If Vout1 = VDD, then the switch on the right is closed because that transistor is clearly on.
(You can look at the switch model or think about the threshold of VDD/2, either way.) At that point,
there is current flowing through the resistor above it, and Vout2 = 0. This is because we are assuming
that there is no resistance in our pure switch model of the transistor. Now, we can look at the switch to
the left. It is clearly open since that transistor is clearly off because Vout2 is low.
So, the second set of answers should be:

Open or VDD Closed or 0
Left Switch ©
Right Switch ©
Vout2 ©

Notice how in this case also, this is self-fulfilling. Having the left transistor open means that there is
no current in the corresponding resistor and Vout1 is indeed VDD for consistency.

(b) (10 pts) To get an understanding of latch dynamics, we will now break it down into smaller pieces.
Below is one half of the latch circuit.

Vin

Ids

R

VDD

Vout

C

Figure 9: Latch half-circuit

Write a differential equation for the voltage Vout in terms of the drain to source current Ids. Treat
Ids as some specified input signal and treat the transistor as a current source connected to ground.
(i.e. There is no dependence on Vin in this part. In this part, treat the Ids as a constant that you are
given.)
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Solution: Using KCL at the output node, let’s equate the currents in (from the resistor) to the currents
out (to the capacitor and through the transistor).

VDD−Vout

R
= Ids +C

d
dt
(Vout)

Rearranging terms, we get:
dVout

dt
=

1
C
(
VDD

R
− Vout

R
− Ids)

Notice that this can be made into a more familiar form as:

d
dt

Vout(t) =
−1
RC

Vout(t)+
VDD

RC
− Ids

C

Here, we see that VDD
RC −

Ids
C is playing the role of the “input” in our standard view of a first-order linear

scalar differential equation.

(c) (10 pts)

R

C

R

VDD

C

Vout1 Vout2

For this circuit, we care about more detailed analog characteristics of the MOSFETs, so we will model
their behavior more accurately as current sources that are controlled by their gate voltages Vin with the
following equation:

Ids = g(Vin)

Where g(Vin) is a some nonlinear function. Using this Ids expression together with the result from
the previous part, write down a system of differential equations for Vout1 and Vout2 in vector form:

d
dt

[
Vout1(t)
Vout2(t)

]
= ~f

[Vout1(t)
Vout2(t)

] .

(Hint: Notice that the latch above can be constructed by taking two of the circuit in Figure 9, and
connecting the Vout of one to the gate Vin of the other and vice-versa.)

Solution:
We observe that Vin for the half-circuit on the left is Vout2. That means that the Ids for the differential
equation corresponding to Vout1 is given by g(Vout2) and similarly, the Ids for the differential equation
corresponding to Vout2 is given by g(Vout1).
Writing those two equations with that substitution gives:

d
dt

Vout1(t) =
−1
RC

Vout1(t)+
VDD

RC
− g(Vout2(t))

C
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d
dt

Vout2(t) =
−1
RC

Vout2(t)+
VDD

RC
− g(Vout1(t))

C

Putting this into vector form yields:

d
dt

[
Vout1(t)
Vout2(t)

]
= ~f

[Vout1(t)
Vout2(t)

]=

[
−1
RCVout1(t)+ VDD

RC −
g(Vout2(t))

C
−1
RCVout2(t)+ VDD

RC −
g(Vout1(t))

C

]
.

(d) (20 pts) For the rest of this problem, assume that your analysis yields the following system of nonlinear
differential equations: [

dVout1
dt

dVout2
dt

]
=

[
1−Vout1−g(Vout2)
1−Vout2−g(Vout1)

]

Suppose that you put this latch into an ideal circuit simulator, and measure g(Vin) and dg
dt (Vin). The

results from these measurements are shown in the graphs below. From your simulations, you also can
see that for the following initial conditions, the latch voltages do not change over time:[

V ∗out1
V ∗out2

]
=

[
1
0

]
,

[
0
1

]
,

[
0.5
0.5

]

Use the graphs below to linearize the differential equations around the three operating points.

Write a linearized system of differential equations around each of those operating points

[
V ∗out1
V ∗out2

]
.

For which of the provided

[
V ∗out1
V ∗out2

]
points is the latch locally stable? For which of the provided

points is the latch locally unstable? Why?

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Vin

g(
V i

n)

g(Vin)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Vin

dg dt
(V

in
)

dg
dt (Vin)

Solution: To linearize these differential equations, we need to take the derivative of ~f with respect

to

[
Vout1
Vout2

]
. This will give a matrix. The derivative of the first component of ~f with respect to Vout1
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is just −1 since that dependence is linear. Similarly for the derivative of the second component of
~f with respect to Vout2 being −1. The off-diagonal derivatives are clearly −g′(Vout2) and −g′(Vout1)
respectively, where g′(Vin) =

dg
dVin

(Vin). This means that we get:

~f

[Vout1
Vout2

]= ~f

[V ∗out1 +δV1
V ∗out2 +δV2

] (16)

= ~f

[V ∗out1
V ∗out2

]+
d
d~v

f (~v)|
~v=

V ∗out1
V ∗out2


[

δV1
δV2

]
+~w (17)

=

[
1−V ∗out1−g(V ∗out2)
1−V ∗out2−g(V ∗out1)

]
+

[
−1 −g′(V ∗out2)

−g′(V ∗out1) −1

][
δV1
δV2

]
+~w (18)

where the disturbance term ~w captures all the approximation errors that are coming from linearization.
That is what lets us write equalities above instead of ≈.
Using this in the differential equation, since the operating point is not changing with time, we get:

d
dt

[
Vout1(t)
Vout2(t)

]
=

d
dt

[
δV1
δV2

]
(t) =

[
−1 −g′(V ∗out2)

−g′(V ∗out1) −1

][
δV1
δV2

]
(t)+

[
1−V ∗out1−g(V ∗out2)
1−V ∗out2−g(V ∗out1)

]
+~w(t)

.
With the general form established, we need to actually write this out for the neighborhoods of the
provided operating points.

For

[
1
0

]
, we know from the provided graphs that g(0) = 0, g(1) = 1, and g′(0) = 0,g′(1) = 0. Here,

we view

[
δV1(t)
δV2(t)

]
as the local deviation from the given operating point of

[
1
0

]
. In other words,[

V1(t)
V2(t)

]
=

[
δV1(t)
δV2(t)

]
+

[
1
0

]
. Substituting everything in, we get:

d
dt

[
δV1
δV2

]
(t) =

[
1−1−0
1−0−1

]
+

[
−1 −0
−0 −1

][
δV1
δV2

]
(t)+~w(t) (19)

=

[
−1 0
0 −1

][
δV1
δV2

]
(t)+~w(t). (20)

This clearly has two eigenvalues of −1 and so is locally stable.

For

[
0
1

]
, we know from the provided graphs that g(0) = 0, g(1) = 1, and g′(0) = 0,g′(1) = 0. Here,

we view

[
δV1(t)
δV2(t)

]
as the local deviation from the given operating point of

[
0
1

]
. In other words,
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[
V1(t)
V2(t)

]
=

[
δV1(t)
δV2(t)

]
+

[
0
1

]
. Substituting everything in, we get:

d
dt

[
δV1
δV2

]
(t) =

[
1−1−0
1−0−1

]
+

[
−1 −0
−0 −1

][
δV1
δV2

]
(t)+~w(t) (21)

=

[
−1 0
0 −1

][
δV1
δV2

]
(t)+~w(t). (22)

This also clearly has two eigenvalues of −1 and so is locally stable.
So both of these operating points for the latch are stable. Small disturbances will be rejected by the
local dynamics and the memory will regenerate its value. This is important in digital circuits.

For

[
0.5
0.5

]
, we know from the provided graphs that g(0.5) = 0.5, g(0.5) = 0.5, and g′(0.5) = 2. Here,

we view

[
δV1(t)
δV2(t)

]
as the local deviation from the given operating point of

[
0.5
0.5

]
. In other words,[

V1(t)
V2(t)

]
=

[
δV1(t)
δV2(t)

]
+

[
0.5
0.5

]
. Substituting everything in, we get:

d
dt

[
δV1
δV2

]
(t) =

[
1−0.5−0.5
1−0.5−0.5

]
+

[
−1 −2
−2 −1

][
δV1
δV2

]
(t)+~w(t) (23)

=

[
−1 −2
−2 −1

][
δV1
δV2

]
(t)+~w(t). (24)

Notice how the constant terms went away (which makes sense since this is an operating point) but now
we need to calculate some eigenvalues to understand if this is locally stable or not.

det

λ I−

[
−1 −2
−2 −1

]= (λ +1)2−4 = λ
2 +2λ −3 = (λ +3)(λ −1).

This has one stable eigenvalue of−3 and an unstable eigenvalue of +1. This means that this operating
point is unstable overall.
You will learn in more advanced digital circuits courses that this instability is actually desirable for
this particular operating point because that is what lets us more effectively use this circuit as a latch.
To set the value of the latch, we just have to drive it past the unstable point and then the unstable point
will push the state to the region of attraction of the desired stable operating point, which will then hold
that value. If the local gain g′ at the middle operating point was too low, then this would also be a
stable operating point and the circuit could end up remembering a useless intermediate voltage that is
not cleanly interpretable as a binary 0 or binary 1.
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9. Choosing cost functions for learning classification (12 pts)

In this problem, we want to design classifiers for data that comes from two classes “+” and “-”. We have
labeled data {(~xi, `i)} from which we want to learn a vector ~w so that we can use the sign of ~w>~x to classify
~x. To do this, we are going to be trying to minimize a sum ctotal(~w) = ∑i c`i(~x>i ~w).

The cost functions we are considering include:

• Squared loss: c+(p) = (p−1)2 and c−(p) = (p− (−1))2

• Exponential loss: c+(p) = e−p and c−(p) = e+p

• Logistic loss: c+(p) = ln
(
1+ e−p

)
and c−(p) = ln

(
1+ e+p

)
For the plotted data, which cost functions will give reasonable answers? Select all that apply.

Squared Exponential Logistic
Reasonable Choice © © ©

Solution: The solution is:

Squared Exponential Logistic
Reasonable Choice

Why? This data is pretty balanced and so any of these approaches will work. There are no outliers of any
kind to confuse least-squares.
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Squared Exponential Logistic
Reasonable Choice © © ©

Solution:

This data clearly has a “wrongly classified” outlier that is a “+” point deep in what should be “-” territory.
Both the squared loss and (especially) exponential loss will be quite sensitive to this while logistic loss will
end up largely ignoring this point. In such cases, we really need to be using logistic loss of the choices
offered here.

Squared Exponential Logistic
Reasonable Choice © ©

© UCB EECS 16B, Fall 2019. All Rights Reserved. This may not be publicly shared without explicit permission. 23



Final Exam @ 2019-12-20 11:31:43-08:00

Squared Exponential Logistic
Reasonable Choice © © ©

Solution:

In this case, we clearly have two masses of points in each category. The + category is particularly striking
because the second mass of points is deep within what we would consider “+” category. These type of points
will confuse squared loss quite a bit while both exponential and logistic loss don’t care about points that are
deeply within their own proper territories. They focus on things closer to the boundaries.

Squared Exponential Logistic
Reasonable Choice ©

Squared Exponential Logistic
Reasonable Choice © © ©

Solution:

This is actually an example with thin parallel categories that have no outliers. For this kind of data, even
squared-loss will work fine because of the balanced nature of the training data. However, in this kind of
example, because the mass distribution doesn’t necessarily reflect the parallel structure of the true boundary,
mean-based classification won’t work as well. However, that is not a choice that you are offered here.

Squared Exponential Logistic
Reasonable Choice
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10. DFT and Polynomials (34 pts)

Consider the polynomial-style DFT basis that comes from evaluating the monomials x0,x1,x2,x3 on the 4-th
roots of unity x0 = e j 2π

4 0 = 1, x1 = e j 2π

4 1 = j, x2 = e j 2π

4 2 =−1, x3 = e j 2π

4 3 =− j.

B =


1 1 1 1
1 e j 2π

4 e j2 2π

4 e j3 2π

4

1 e j2 2π

4 e j4 2π

4 e j6 2π

4

1 e j3 2π

4 e j6 2π

4 e j9 2π

4

=


1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

 .

(a) (4 pts) The DFT coefficients ~F are related to a vector of samples ~f by the relationship ~f = B~F . In
other words, ~F represents ~f in the basis given by the columns of B. Similarly for the DFT coefficients
~G and a vector of samples~g — they too satisfy the relationship~g = B~G.
What are the DFT coefficients ~H for~h=α~f +β~g in terms of ~F and ~G. Here, α and β are constant
real numbers.
Solution: The DFT coefficients of ~H are

~H = B−1~h = B−1(α~f +β~g) = α ·B−1~f +β ·B−1~g = α~F +β ~G.

(b) (8 pts) Explicitly find the DFT coefficients ~F of the vector ~f =


0
1
0
−1

 i.e. we want ~F so that ~f = B~F .

Solution:

~F = B−1~f =
1
4

B∗~f =
1
4


1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j




0
1
0
−1

=


0
− j

2
0
j
2

 .
You could also have noticed that the samples look like they came from sin(θ) for θ = 0, π

2 ,π,
3π

2 and
since sin(θ) = 1

2 j e
jθ − 1

2 j e
− jθ , we can get those same coefficients directly by using an interpolation

perspective.

(c) (10 pts) Show that if ~f is a real vector, then:
• F [0] is always real and so is F [2].
• F [1] = F [3].

(HINT: What do you know about B−1?)

Solution: Let

~f =


a
b
c
d


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where a,b,c,d are real numbers. Then,

~F = B−1~f =
1
4

B∗~f =
1
4


1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j




a
b
c
d

=
1
4


a+b+ c+d

a−b j− c+d j
a−b+ c−d

a+b j− c−d j

 .
Hence, we see that F [0] and F [2] are always real since a,b,c,d are real, while F [1] = F [3] since
everything multiplied by j in one is multiplied by − j in the other and vice versa.
This is a direct demonstration of the desired result.
Alternatively, you could have noticed that if we consider B = [~b0,~b1,~b2,~b3], then~b0 and~b2 are real
while~b1 and~b3 are complex conjugates by inspection. The formula ~F = 1

4 B∗~f means that F [i] = 1
4
~b∗i ~f .

Now,~b0 and~b2 are real and that immediately gives us what we want since the conjugate transpose of
a real vector is just the transpose. Similarly, F [1] = F [3] since F [3] = 1

4
~b∗3~f =

1
4
~b∗3~f =

1
4
~b∗1~f = F [1].

Either approach works.
(d) (12 pts) We notice that when we use the standard polynomial interpolation approach f̂ (e jθ ) = F [0]+

F [1]e jθ +F [2]e j2θ +F [3]e j3θ , we often get nonzero imaginary parts even though our samples ~f were
purely real. Here ~F are the DFT coefficients corresponding to ~f so that ~f = B~F .
Give new constants k1,k3 so that

f̂ (e jθ ) = F [0]+F [1]e jk1θ +F [2]
e j2θ + e− j2θ

2
+F [3]e jk3θ

will always return a real number for each θ ∈ [0,2π], and actually interpolates the data points
— i.e. f [i] = f̂ (e j 2πi

4 ) for i = 0,1,2,3.

Prove that this f̂ (e jθ ) is always real for θ ∈ [0,2π] no matter what real values the vector ~f has.
(HINT: For proving realness, use what is already established by the previous part (even if you didn’t
get the previous part!) and write out f̂ (e jθ ) in terms of constants, sines, and/or cosines. Using a polar
form for F [1] might be helpful.)

Solution: Here, we use k1 = 1 and k3 = −1. This is the natural choice. From the previous part, we
know that F [1] = F [3]. This implies that F [1]e jθ and F [3]e− jθ are complex conjugates, and hence,

F [1]e jθ +F [3]e− jθ is real.

If you wanted, you could also have written F [1] = |F [1]|e j∠F [1] and so F [3] = |F [1]|e− j∠F [1] by com-
plex conjugacy. Therefore F [1]e jθ +F [3]e− jθ = |F [1]|e j∠F [1]e jθ +|F [1]|e− j∠F [1]e− jθ = |F [1]|(e j(∠F [1]+θ)+
e− j(∠F [1]+θ)) = 2|F [1]|cos

(
∠F [1]+θ

)
which is clearly real.

Next, from the previous part, we know that F [0] and F [2] are both real. Since e j2θ+e− j2θ

2 = cos(2θ) is
real, it follows that

F [0]+F [2]
e j2θ + e− j2θ

2
is real.

Therefore, it follows that f̂ (e jθ ) is always real for θ ∈ [0,2π] no matter what real values the vector ~f
has.
In actuality, the constraint that the function actually interpolates the data points just requires k1 = 1+q4
for any integer q. So k1 = 1 is the natural choice, but −3,5,9 all could work. For realness, we just
need k3 =−k1, we don’t actually need it to be −1 per se — just properly paired with k1.
The reason for this is that we simply need e jk1θ to agree with the first column~b1 when evaluated at
θ = 0, π

2 ,π,
3π

2 and any of the k1 values above will do that.
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