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EECS 127/227AT Optimization Models in Engineering
Spring 2019 Midterm 1

1. (1 Point) What is one of your favorite things to do outside of school?

2. (1 Point) What is one of things you learned in 127/227AT that you enjoyed?

Do not turn this page until the proctor tells you to do so. You may work on the questions above.
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Print your name and student ID:

3. (13 points) Singular value decomposition

The compact form of the singular value decomposition of a matrix A ∈ R3×3 is given as

A =


2
3

1√
2

2
3 − 1√

2
1
3 0

[3 0
0 2

][ 1√
3

1√
3
− 1√

3
1√
6

1√
6

2√
6

]
.

(a) (2 points) What is the rank of A? Justify.

Solution: A has two nonzero singular values, so its rank is 2.

(b) (3 points) What is the dimension of the column space (range) of A? Write a basis for the
column space (range) of A.
Solution: Given the SVD decomposition A = UΣV >, R(A) is spanned by the columns of
U corresponding to the nonzero singular values. Therefore,

2
2
1

 ,
 1
−1
0


is a basis for R(A), and dim(R(A)) = 2.

(c) (4 points) What is the dimension of the null space of A>? Write a basis for the null space
of A>. Solution: By Fundamental Theorem of Linear Algebra, N (A>) is orthogonal to
R(A), and it complements R(A) to fill up R3. Therefore, N (A>) is spanned by the columns

of U corresponding to the zero singular values. In other words, N (A>) = span
([
a b c

]>)
,

where
[
a b c

]>
is the unshown column of U . The fact that U is an orthonormal matrix

implies that 2a+ 2b+ c = 0 and a− b = 0. Consequently,
 1

1
−4


is a basis for N (A>) and dim(N (A>)) = 1.

(d) (4 points) Let B2 denote the unit-norm ball in `2 norm: B2 = {z ∈ R3 : ‖z‖2 ≤ 1}. Compute
the minimum value of x>Ay, where x and y are two vectors in B2; that is, find minx,y∈B2 x

>Ay.

Solution: First note that minx,y∈B2 x
>Ay = −maxx,y∈B2 x

>Ay. Then,

max
x,y∈B2

x>Ay = max
x,y∈B2

x>UΣV >y = max
x,y∈B2

x>Σy = σmax(A) = 3,

where the second equality follows from the fact that U and V are orthonormal matrices. As
a result, minx,y∈B2 x

>Ay = −3.
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Print your name and student ID:

4. (12 points) Symmetric and skew-symmetric matrices
A square matrix A ∈ Rn×n is called skew-symmetric if all its diagonal elements are zero and
Aij = −Aji for all i, j ∈ {1, . . . , n}. In other words, A is skew-symmetric if and only if A> = −A.

(a) (3 points) Let A ∈ Rn×n be a skew-symmetric matrix, and let B ∈ Rn×n be a symmetric
matrix. Show that 〈A,B〉 = 0, where inner product of A and B is defined as

〈A,B〉 = Trace(A>B).

Note that this implies the space of symmetric matrices is orthogonal to the space of skew-
symmetric matrices.

Solution:

Solution 1: Note that the diagonal entries of skew-symmetric matrix A must be 0.

〈A,B〉 =
∑
i

∑
j

AijBij =
∑
i

∑
j>i

AijBij +
∑
i

∑
j<i

AijBij =
∑
i

∑
j>i

Aij (Bij −Bij) = 0.

Solution 2: B can be written as B = UU> for some U ∈ Rn×n. Then,

〈A,B〉 = 〈A,UU>〉 = 〈AU,U〉 = 〈−A>U,U〉 = −〈U,AU〉,

which can hold only when 〈AU,U〉 = 0 ⇐⇒ 〈A,B〉 = 0.

(b) (2 points) The set of all matrices in R2×2 forms a vector space. All elements in this space can
be written as a linear combination of{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
,

and because these matrices are linearly independent, they provide a basis for R2×2.

Similarly, the set of all skew-symmetric matrices in R2×2 forms a vector space. Write a basis
for the space of skew-symmetric matrices in R2×2.

Solution:

{[
0 1√

2

− 1√
2

0

]}

(c) (4 points) Consider the matrix A =

[
a b
c d

]
∈ R2×2. Find a symmetric matrix Asym ∈ R2×2

and a skew-symmetric matrix Askew ∈ R2×2 such that

A = Asym +Askew.

Solution: 〈[
a b
c d

]
,

[
0 1√

2

− 1√
2

0

]〉[
0 1√

2

− 1√
2

0

]
=

1

2

[
0 b− c

c− b 0

]
.
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Solution: From part (a), we know that the space of symmetric matrices and the space of
skew-symmetric matrices are orthogonal. Then, the projection of the given matrix onto the
space of symmetric matrices will be equal to the projection of[

a b
c d

]
− 1

2

[
0 b− c

c− b 0

]
=

1

2

[
2a b+ c
b+ c 2d

]
.

However, since this matrix is symmetric, its projection onto the space of symmetric matrices
will be itself.

(d) (3 points) Consider the function f : R2 7→ R, which is defined as f(x) = 1
2x
>
[
a b
c d

]
x. Find

the Hessian of the function. Show your calculations.

Solution: For any A ∈ Rn×n, the Hessian of f(x) = 1
2x
>Ax is given as 1

2(A+A>). Then,
the Hessian of the given function is

1

2

[
2a b+ c
b+ c 2d

]
.
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Print your name and student ID:

5. (12 points) Online Least Squares
Consider n sensors located in different areas of California to measure the temperature of the air
(as a scalar).

Let xi,t denote the measurement from sensor i at time t, for for i = 1, 2, . . . , n and t = 1, 2, . . . , T .
Assume T < n.

We represent xt ∈ Rn as a column vector of all measurements at time t. Thus,

xt =


x1,t
x2,t

...
xn,t

 .

Let Xt ∈ Rn×t denote the matrix with columns x1, x2...xt. Thus we have,

Xt =
[
x1 x2 . . . xt

]
.

We additionally consider scalars y1, y2, . . . , yn where yi ∈ R. Here yi represents wind chill at
the region corresponding to sensor i, as predicted by meteorological department with the help of
weather satellites. Note that yi does not depend on time t. Let y ∈ Rn denote the column vector
containing the wind chill at all sensors. Thus,

y =


y1
y2
...
yn

 .

Define qt ∈ Rn iteratively as follows. First,

q1 =
x1
‖x1‖2

.

For t = 2, 3, . . . , T :

st = xt −
t−1∑
j=1

〈xt, qj〉 qj

qt =
st
‖st‖2

.

Let Qt ∈ Rn×t denote the matrix with columns q1, q2, . . . , qt. Thus we have,

Qt =
[
q1 q2 . . . qt

]
.

Assume that for all t = 1, 2, . . . , T , the matrix Xt is full column rank, i.e the columns of
Xt are linearly independent. Further for this problem, assume that the inner product of x and
y, 〈x, y〉, is given by x>y.



6

For each time i = 1, 2, . . . t, we are interested in fitting a linear model to predict y from Xt, the
sensor measurements up to time t. Consider the following two problems at time t:

w∗t = argmin
w
‖y −Xtw‖2

v∗t = argmin
v
‖y −Qtv‖2 .

(a) (1 point) Write an expression for w∗t in terms of Xt and y.
Solution: Taking gradient of the squared objective and setting it to zero we obtain:

w∗t = (X>t Xt)
−1X>t y.

(b) (1 point) Write an expression for v∗t in terms of Qt and y.
Solution: Taking gradient of the squared objective and setting it to zero we obtain:

v∗t = (Q>t Qt)
−1Q>t y.

(c) (3 points) Show that for each t,
Xtw

∗
t = Qtv

∗
t .

Note that this implies that the matrices Q and X have the information for fitting a linear
model for y.
Solution: Method 1:
Xtw

∗
t is the projection of y onto the column space of X. Similarly Qtv

∗
t is the projection of y

onto the column space of Q. Since X and Q have the same column space, the result holds.
Method 2:
Note that the QR decomposition of Xt yields

Xt = QtRt,

since Qt is an orthonormal basis for column space of Xt.
Substituting Xt in terms of Qt and Rt and using the fact that Rt is invertible we get,

w∗t = ((QtRt)
>QtRt)

−1(QtRt)
>y

= (R>t Q
>
t QtRt)

−1R>t Q
>
t y

= (Rt)
−1(Q>t Qt)

−1(R>t )−1R>t Q
>
t y

= (Rt)
−1(Q>t Qt)

−1Q>t y

= (Rt)
−1v∗t .

Substituting Xt in terms of Qt and Rt and w∗t from the expression above we get,

Xtw
∗
t = QtRt(Rt)

−1v∗t

= Qtv
∗
t .
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(d) (3 points) For each t, show that we can express w∗t in terms of Xt, Qt and v∗t as,

w∗t = (X>t Xt)
−1X>t Qtv

∗
t .

Hint: It might be useful to start by justifying that y can be expressed as y = Xtw
∗
t + et, where

et is orthogonal to columns of Xt. Then use the fact that Xtw
∗
t = Qtv

∗
t .

Solution: Since the least squares problem finds the projection of y onto the column space
of Xt, the error term et = y − Xtw

∗
t is orthogonal to the column space of Xt and thus et is

orthogonal to columns of Xt. Now,

wt = (X>t Xt)
−1X>t y

= (X>t Xt)
−1X>t (Xtw

∗
t + et)

= (X>t Xt)
−1X>t (Xtw

∗
t ) + (X>t Xt)

−1(X>t et)

= (X>t Xt)
−1X>t (Xtw

∗
t )

= (X>t Xt)
−1X>t Qtv

∗
t .

In the second-last inequality we used the fact that et is orthogonal to columns of Xt and in
the last inequality we used the fact that Xtw

∗
t = Qtv

∗
t .

(e) (4 points) Show that v∗t can be obtained in terms of y and qi, i = 1, 2, . . . , t as:

v∗t =


(v∗t )1
(v∗t )2

...
(v∗t )t

 ,
where,

(v∗t )i = q>i y, i = 1, 2, . . . , t.

For t = 2, 3, . . . , T , use the above result to obtain v∗t using only v∗t−1, qt and y.
Solution:

v∗t = (Q>t Qt)
−1Q>t y

= Q>t y.

The last equality uses the fact that Qt is an orthogonal matrix. Now the ith entry of the
column vector Qty can be expressed as q>t y. For t = 2, 3, . . . , T we can express v∗t as:

v∗t =

[
v∗t−1
q>t y

]
.
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Print your name and student ID:

6. (9 points) PCA
Let {x1, x2, . . . , xm} be a set of points in R3. Assume that their empirical mean x̂ and empirical
covariance matrix Σ are given as:

x̂ =
1

m

m∑
i=1

xi = 0,

Σ =
1

m

m∑
i=1

xix
>
i =

 0.8 0.6 0
−0.36 0.48 0.8
−0.48 0.64 −0.6

9 0 0
0 9 0
0 0 4

0.8 −0.36 −0.48
0.6 0.48 0.64
0 0.8 −0.6

 .
Note that Σ is a symmetric matrix, and it is given with its singular value decomposition, which is
equivalent to its eigen-decomposition.

(a) (3 points) Let w ∈ R3 be a vector. Let {x̂1, x̂2, . . . , x̂m} be projections of the points onto w.
Write a vector w that maximizes the variance of the projected points {x̂1, x̂2, . . . , x̂m}.

Solution: The question asks for the first principal component for the data, which is the
singular vector of the matrix Σ that corresponds to its largest singular value. Because the
largest and the second largest singular values of Σ are equal, any vector in

span


 0.8
−0.36
−0.48

 ,
 0.6

0.48
0.64


maximizes the variance of the projected points.

(b) (6 points) Let A ∈ R3×3 be a matrix such that A>A = Σ, and consider the set S ⊂ R3

defined as S = {Au : u ∈ R3, ‖u‖2 ≤ 1}. Assume that the points in S are projected onto the
hyperplane H(w) = {z ∈ R3 : w>z = 0} for some w ∈ R3. Find the vector w for which the
projection of S onto H(w) is a circular disc.

Solution:

A is given to be the square-root matrix of Σ. If A is the symmetric square-root of Σ, then the
SVD of A is

A =

 0.8 0.6 0
−0.36 0.48 0.8
−0.48 0.64 −0.6

3 0 0
0 3 0
0 0 2

0.8 −0.36 −0.48
0.6 0.48 0.64
0 0.8 −0.6

 .
In general, however, A may not be symmetric, and its SVD could be

A = U

3 0 0
0 3 0
0 0 2

0.8 −0.36 −0.48
0.6 0.48 0.64
0 0.8 −0.6


with some orthonormal matrix U ∈ R3×3.

Let x̂ denote the projection of a point x ∈ S onto a vector w ∈ R3 with unit norm:

x̂ = w>x.
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Note that there is a vector u ∈ R3 such that Au = x and ‖u‖2 ≤ 1. Then,

x̂ = w>x = w>Au = w>U

3 0 0
0 3 0
0 0 2

0.8 −0.36 −0.48
0.6 0.48 0.64
0 0.8 −0.6

u
= w̃>

3 0 0
0 3 0
0 0 2

 ũ
where w̃ = U>w and ũ is a unit vector.

If w̃ is
[
1 0 0

]
or
[
0 1 0

]
, then |x̂| ≤ 3. In addition, there exist points with x̂ = 3 and

x̂ = −3. Consequently, for every vector w̃ ∈ span
{[

1 0 0
]
,
[
0 1 0

]}
with ‖w̃‖2 = 1, the

projection of x onto corresponding w = Uw̃ changes value between −3 and 3. On the other
hand, if we project a point x onto the last column of U , it can take value between −2 and 2.
Therefore, we want to project onto the plane spanned by the first two columns of U , and the
normal vector for this plane is given by the last column of U . This shows that the normal
vector of the hyperplane H(w) needs to be the last column of U .

If A is the symmetric square-root of Σ, then the normal vector of H(w) needs to be

 0
0.8
−0.6

.
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7. (12 points) Errors in the measurement apparatus
This question is about solving the following optimization problem:

Q∗λ = argmin
Q

‖Qw − y‖22 + λ ‖X −Q‖2F . (1)

w ∈ Rm, y ∈ Rn, X ∈ Rn×m, λ ∈ R, λ > 0 are all known and constant in Eq. (1). You do not
have to carefully read the rest of the setup to solve the question, but it might give you context.

We perform a series of experiments where we illuminate an object with patterned light and collect
the reflected light after it was incident on the object, to help us understand the properties of the
object. This is the key idea behind tomography.

The patterned light that is used for illumination is measured and recorded in the “measurement”
matrix X ∈ Rn×m. The ith row of this matrix, x>i , represents the illumination measurement for
the ith experiment, with a total of n experiments. The intensity of the reflected light is measured
as a scalar observation, yi, for the ith experiment.

Thus we have n pairs (xi, yi) i = 1, 2, . . . , n, corresponding to the n experiments, where xi ∈ Rm
is a vector and yi ∈ R is a scalar.

If our observations are accurate, we expect that (xi, yi) should satisfy the equation,

x>i w = yi, i = 1, 2, . . . , n.

where vector w ∈ Rm represents a known image.

To be precise, let X ∈ Rn×m denote the matrix with rows as x>i ,

X =


← x>1 →
← x>2 →

←
... →

← x>n →

 .
Let y ∈ Rn denote the column vector with entries yi,

y =


y1
y2
...
yn

 .
We expect the following equation to hold:

Xw = y,

where w is a known vector.

Unfortunately, after completing the experiment we find that our apparatus made errors while
measuring the illumination on the image, i.e. there there are small errors in the recorded values
of X. However the observations, yi, are accurate. We would like to recover the true value of the
illumination, represented by Xtrue = Q. For this we use the two pieces of information that we have:

• Qw ≈ y
• Q ≈ X.

We mathematize this by writing the objective function Eq. (1).
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(a) (3 points) Consider Z ∈ Rm×m defined as Z = ww> + λI. Show that Z is invertible.
Solution:

x>Zx = x>ww>x+ λx>x

= (x>w)2 + λ ‖x‖22
> 0, if x 6= 0.

(b) (8 points) Find an expression for Q∗λ as defined in Eq. (1) in terms of λ,X,w and y. Assume
that we can find the minimum value by setting gradient with respect to Q of the objective
function to zero. Justify any algebraic manipulations you make.
Hint: The following identities might be useful:

‖X‖2F = Trace(X>X),

∇QTrace(Q>QB) = QB> +QB, for B square,

∇QTrace(AQ) = A>.

Solution:

f(Q) = ‖Qw − y‖22 + λ ‖X −Q‖2F
= (Qw − y)>(Qw − y) + λTrace((X −Q)>(X −Q))

= w>Q>Qw − w>Q>y − y>Qw + y>y

+ λ(Trace(X>X)− Trace(X>Q)− Trace(Q>X) + Trace(X>X))

= w>Q>Qw − 2y>Qw + λTrace(Q>Q)− 2λTrace(X>Q) + y>y + λTrace(X>X)

= Trace(w>Q>Qw)− 2Trace(y>Qw) + λTrace(Q>Q)− 2λTrace(X>Q) + y>y + λTrace(X>X)

= Trace(Q>Qww>)− 2Trace(wy>Q) + λTrace(Q>Q)− 2λTrace(X>Q) + y>y + λTrace(X>X).

Thus,

∇Qf(Q) = Qww> +Qww> − 2yw> + λ(Q+Q)− 2λX + 0 + 0

= 2Qww> − 2yw> + 2λQ− 2λX

= 2(Q(ww> + λI)− (yw> + λX)).

Setting the gradient to 0, we obtain:

Q(ww> + λI) = (yw> + λX)

=⇒ Q = (yw> + λX)(ww> + λI)−1.

Thus,
Q∗λ = (yw> + λX)(ww> + λI)−1.
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(c) (1 point) Find lim
λ→∞

Q∗λ.

Solution:

lim
λ→∞

Q∗λ = lim
λ→∞

(yw> + λX)(ww> + λI)−1

= λX(λI)−1

= X.


