UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

EE 42 / 100	Midterm 2	
Name:		
Solutions	1. A.	
SID:	Problem	m
	1	
Section:	2	
	3	
Name of student left of you:	4	
	To	tal
Name of student right of you:		

Spring 2008

Score

- Check the units of your results.
- Closed book, closed notes.
- No calculators.
- Leave pack, books, and electronic devices (e.g. cell phones) in isle.
- Take off caps or hats.
- Copy your answers into marked boxes on exam sheets.
- Simplify numerical and algebraic results as much as possible.
- Be kind to the graders and write legibly. No credit for illegible results.
- No credit for multiple differing answers to the same question.
- The UC rules on dishonesty apply.

1. [25 points] A capacitor C_1 is used to power a model airplane, represented in the circuit diagram below by resistor R_1 . Initially the capacitor is charged to voltage V_1 . Calculate the fraction r of the initial energy remaining on the capacitor when the current i_1 has decreased to half its initial value.

$$r = \frac{1}{4}$$

The energy stored in a capacitor is given by
Estored =
$$\frac{1}{2}CV^2$$

Eo = $\frac{1}{2}C_1V_0^2$ = $\frac{1}{2}C_1V_1^2$
Ef = $\frac{1}{2}C_1V_0^2$ = $\frac{1}{2}C_1(1+R_1)^2$ = $\frac{1}{2}C_1(\frac{1}{2}R_1)^2$ = $\frac{1}{2}C_1(\frac{V_1}{2})^2$
 $r = \frac{E_1}{E_0} = \frac{1}{2}\frac{C_1(\frac{V_2}{2})^2}{\frac{1}{2}C_1(V_1^2)} = \frac{1}{2}$

2. [25 points] In the circuit below C_1 represents a touch sensor. The comparator controls the position of the switch as follows: Whenever V_o reaches the value V_{ref} , the switch is set to position *a*. After V_o drops to zero, the switch is set to position *b*. Touch is detected by measuring the frequency f_o at which the switch position changes.

Derive an analytical expression for f_o . Assume that the operational amplifier is ideal. Suggestion: sketch $v_o(t)$ and mark the knows and unknown in the graph.

$$f_o = \frac{I_1 \cdot J_2}{C \cdot \text{Vref}(I_1 + J_2)}$$

The op-amp is in negative feedback. up=un=0 up=un=0V Let's define the current & voltage through (1 as (G) + VCA) i= cdV => V(0)= 2 Sticksdx + Ve(0) T= T0+Tb=) += +TB Charge Cycle (switch is set to b) Vref= 1 (to wat VLO) f= cut + Civiet = [I'Iz Vief= + IzTa + OV Ta= C.Viet VRY Discharge Cycle (swatch is set to a) OV= - L Storto wat + Ve(tr) change ov = t (-Iz) To + Vret Note: CI charges through Iz & aischneiger Inrough II. Tb = Civref 3

3. [25 points] The circuit below shows a simple model of a wired Ethernet connection. V₁ is the signal source and R₁ represents its impedance. The cable is modelled by capacitor C₂ and R₂ represents the receiver's input impedance. The capacitor C₁ has been added to enable higher frequency transmission at low error rates.

Derive an expression for C_1 as a function of R_1 , R_2 , and C_2 for which $\frac{V_2(j\omega)}{V_1j\omega}$ has a constant value that is independent of frequency.

Note: This technique is used in many transceivers including 100 Mbit Ethernet.

Short Solution

The impedance at low frequencies should equal the impedance at high frequencies. Since the caps are open at low freqs & even should at high freqs

$$\frac{R_2}{R_1 + R_2} = \frac{1}{3c_1} \frac{1}{3c_1} \frac{1}{3c_2} \frac{1}{3c_1} \frac{1}{3c_2} \frac{1}{3c_1} \frac{1}{3c_2} \frac{1}{3c_1} \frac{1}{3c_2} \frac{1}{3c_1} \frac{1}{3c_1} \frac{1}{3c_2} \frac{1}{3c_1} \frac{1}{3c_2} \frac{1}{3c_1} \frac{1}{3c_2} \frac{1}{3c_1} \frac{1}{3c_2} \frac{1}{3c_2} \frac{1}{3c_1} \frac{1}{3c_2} \frac{1}{3c_2}$$

$$\frac{V_{100}}{V_{100}} = \frac{V_{20}}{V_{100}} = \frac{V_{2$$

In order for the transfer to be independent of frequency, the coefficients of judiors should be equal.

$$R_{1}L_{1} = \frac{R_{1}R_{2}}{R_{1}+R_{2}} (C_{1}+C_{2})$$

$$R_{1}L_{1}(R_{1}+R_{2}) = R_{1}R_{2} (C_{1}+C_{2})$$

$$C_{1}\frac{R_{1}}{R_{1}+R_{2}} = C_{2}\frac{R_{2}}{R_{1}+R_{2}}$$

$$C_{1} = C_{2}\frac{R_{2}}{R_{1}}$$

4. [25 points] An audio system suffers from high frequency interference. Design a circuit consisting of a resistor *R* and capacitor *C* that passes low frequency signals $\left(\left|\frac{V_{\theta}(j\omega)}{V_{i}(j\omega)}\right|_{\omega=0}=1\right)$ and

attenuates high frequency signals $\left(\left| \frac{V_o(j\omega)}{V_i(j\omega)} \right|_{\omega > 0} < 1 \right)$. (a) Draw a diagram of a circuit with these characteristics, consisting of *R* and *C*. Clearly mark

(a) Draw a diagram of a circuit with these characteristics, consisting of R and C. Clearly mark the input and output voltages V_i and V_o with plus and minus signs.

(b) Derive a symbolic expression for the value of C as a function of R that results in 26 dB attenuation at a given frequency f_o. Hint: draw the Bode plot (piece-wise linear approximation of magnitude response) of the circuit. Mark what is known and unknown in the graph.

$$C = \frac{10}{7150 \text{ K}} (assume form in Herle) = \frac{70}{50 \text{ K}} (assume form in rud(s))$$

bode Plot for $H(s) = \frac{1}{1+sRC} = \frac{1}{1+s} \frac{1}{Wp}$ where $Wp = \frac{1}{RC}$
 $0.00 \frac{1}{1-sRC} = \frac{1}{1+sRC} \frac{1}{1+s} \frac{1}{Wp}$ where $Wp = \frac{1}{RC}$
 $0.00 \frac{1}{1-sCdD} \frac{1}{1+sRC} = \frac{1}{1+s} \frac{1}{Wp}$ where $Wp = \frac{1}{RC}$
 $1 \frac{1}{1+s} \frac{1}{Wp} \frac{1}{WD} \frac{1}{1+s} \frac{1}{Wp} \frac{1}{Wp} \frac{1}{Wp} \frac{1}{1+s} \frac{1}{Wp} \frac{1}{W$

Prob 4 cont.

The yamas difference at a wo Grequency) 10 times wp is Gainan (10 wp) - Gaindis (wp)

$$= -20109(10 \text{ wp}) + 20109(10\text{ p})$$

= -20109(10) - 20109(2000) + 20109(0 (mp))
= -20109(0(0)) = -20d B (at 10 times mp)

The gainax difference at a W_{0} Z times W_{p} is Gainaxs (Z Wp) - Gainadis (Wp) = -2010510 (Z Wp) + 2010510 (Wp) = -20105 (Z) - 20105 (Wp) + 20105 (Wp) = -2105 (Z) = -6015 (at W Z timet Wp)

Now for our problem, we have 26 dbs attenuation

26dB= ZOdB + 6dB 10x ZX = Gamar(10x) + Gamab(Zx) Z Gamar(20:Wp)

Wo=20. wp = 20. RC

$$C = \frac{20}{R \cdot W_0}$$

Since Wo = 271 fo

$$C = \frac{20}{2\pi foR} = \frac{10}{\pi foR}$$