Q1 Honor Code

0 Points

Handwrite the following text on a blank sheet of paper, sign and date it, and upload a scan/photo of it.
"As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. All of the work submitted here is mine, and I have not discussed the content of this exam with any other person. I have not consulted any resources beyond the course materials and my notes during the exam. I have not used calculators, computers, or the internet to do calculations or look up answers."

Instructions For the remainder of the questions, you must neatly handwrite each answer on a separate piece of paper and upload a separate scan/photo for each question. This means you will need at least ten sheets of paper (one for the cheat sheet, one each for 4.1-4.4, and one each for Q5-Q9). Feel free to use more than one sheet for an answer if needed. Note that both PDF and picture/photo format (JPG) are accepted, so use whichever is most convenient. After uploading, be sure to check that your file uploaded correctly. Do not wait until the last minute to upload your files.

If you have a question during the exam, send me or one of the GSIs a private message on Piazza, and we will respond. If there is a clarification which may be useful to everyone, we will post it on Piazza.

Please show all of your work. When citing a theorem, it is best to simply write the statement of the theorem. Good luck!

Q2 Cheat Sheet

10 Points

Attach your handwritten 1-3 page cheat sheet below.
(update $8: 26$ pm 2/17: in a previous announcement I said "handwritten or typed", so if you already typed it that's also acceptable. If not, handwritten is preferred.)

Q3 True or False

20 Points
Select True (i.e., always true) or False (i.e., sometimes false) for each statement.
No need to provide an explanation. All matrices mentioned are real unless noted otherwise.

Q3.1

2 Points
If the linear system $A x=0$ has at least one solution then $A x=b$ must have at least one solution.

Q3.2

2 Points
If the linear system $A x=0$ has at most one solution then $A x=b$ must have at most one
solution.

Q3.3

2 Points
If $x, y, z \in \mathbb{R}^{3}$ are vectors such that $\{x, y\}$ are linearly independent and $\{y, z\}$ are linearly independent, then $\{x, y, z\}$ must be linearly independent.

Q3.4

2 Points
If $v_{1}, v_{2} \in \mathbb{R}^{3}$ are linearly independent vectors and $v_{3} \notin \operatorname{span}\left\{v_{1}, v_{2}\right\}$ then $\left\{v_{1}, v_{2}, v_{3}\right\}$ must be linearly independent.
(clarification 2:21pm 2/18: you may assume $v_{3} \in \mathbb{R}^{3}$ above)

Q3.5

2 Points
If R is the reduced row echelon form of an $m \times n$ matrix A and $A x=b$ is consistent for some vector $b \in \mathbb{R} \quad m$, then $R x=b$ must also be consistent.

Q3.6

2 Points
If A and B are $n \times n$ matrices then $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.

Q3.7

2 Points

If A is a square matrix such that A 2is invertible, then A must be invertible.

Q3.8

2 Points
If b_{1}, b_{2}, b_{3} is a basis of \mathbb{R}^{3} and A, B are 4×3 matrices satisfying $A b_{i}=$ $B b_{i}$ for $i=1,2,3$, then $A=B$.

Q3.9

2 Points
If H is a subspace of $\mathbb{R}^{5}, v_{1}, \ldots v_{4} \in H$, and v_{1}, \ldots, v_{4} are linearly independent then $\operatorname{dim}(H) \geq 4$.

Q3.10

2 Points

Q4 Examples

20 Points

Give an example of each of the following, explaining why it has the required property,
or explain why no such example exists.

Q4.1 Linear Systems

5 Points
Two vectors $b_{1}, b_{2} \in \mathbb{R}^{3}$ and a 3×3 matrix A such that the linear system $A x=b_{1}$ has exactly one solution and the linear system $A x=b_{2}$ is inconsistent.

Q4.2 PEMDAS

5 Points
Two nonzero 2×2 matrices A and B such that

$$
(A+B)^{2}=A^{2}+B^{2}
$$

\square

Q4.3 Onto linear transformation

5 Points
An onto linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
T\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

and

$$
T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
-1 \\
-2
\end{array}\right] .
$$

A 2×4 matrix A such that $\operatorname{Nul}(A)$ has dimension equal to 3 .

Q5 Outside Span

10 Points
Consider the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], v_{2}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], v_{3}=\left[\begin{array}{c}
-1 \\
3 \\
2
\end{array}\right], v_{4}=\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right] \in \mathbb{R}^{3} .
$$

Find the first vector in this list which is not in the span of the other vectors.
Explain your reasoning.

(clarification 9:33pm 2/17: "first" means the v_{i} with the lowest index $i=$ $1,2,3,4$, and "other" means all of the vectors besides v_{i}.)

Q6 Inverse

10 Points
Consider the matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & 3 \\
4 & -3 & 8
\end{array}\right]
$$

(a) Is A invertible? If so, compute its inverse. If not, explain why.
(b) Find a solution $x \in \mathbb{R}^{3}$ to the linear system

$$
A x=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

(c) Is the solution you found unique? Explain why or why not.

```
*

\section*{Q7 Determinant}

\section*{8 Points}

Find the determinant of the matrix
\[
A=\left[\begin{array}{ccccc}
0 & 2 & 3 & 4 & 5 \\
1 & 0 & 3 & 4 & 5 \\
-1 & 0 & 3 & 4 & 5 \\
0 & 0 & 0 & 4 & 5 \\
0 & 0 & 0 & 0 & 4
\end{array}\right]
\]

\section*{Q8 Both Subspaces}

10 Points
Consider the matrices
\[
A=\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 4 & -2 \\
-1 & 2 & -1
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & -2 & 1 \\
-1 & -3 & 1
\end{array}\right]
\]
(a) Find a nonzero vector \(v \in \mathbb{R}^{3}\) which is an element of both of the subspaces \(N u l(A) \subseteq \mathbb{R}^{3}\) and \(\operatorname{Col}(B) \subseteq \mathbb{R}^{3}\) (i.e., \(v \in N u l(A) \cap \operatorname{Col}(B)\) ). Explain your reasoning.
(b) Are the columns of the product \(A B\) linearly independent? Explain why or why not based on your answer to (a), without doing any matrix multiplication.

(update \(8: 42 \mathrm{pm} 2 / 17\) : the entry \(A(2,3)\) was mistakenly -4 , which was a typo. It is now fixed to -2 ).

\section*{Q9 Rotation and Reflection}

12 Points
Let \(T_{\pi / 6}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) denote the linear transformation which rotates a vector in \(\mathbb{R}^{2}\) counterclockwise by \(\pi / 6\) radians. Let \(T_{\text {ref }}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) be the linear transformation which reflects a vector \(x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\) across the line \(x_{1}=x_{2}\).
(a) Sketch a cartoon illustrating what these linear transformations do to the vector \(e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]\).
(b) Find the standard matrices of \(T_{\pi / 6}\) and \(T_{r e f}\).
(c) Find a nonzero vector \(v \in \mathbb{R}^{2}\) such that
\[
T_{\pi / 6} \circ T_{r e f}(v)=T_{r e f} \circ T_{\pi / 6}(v)
\]
or explain why no such vector exists.

(clarification 2:21pm 2/18: for part (a), your sketch should show what each transformation by itself does to the vector \(e_{1}\) )```

