Weaver CS 161 .
Fall 2020 Computer Security Midterm

For questions with circular bubbles, you may select exactly one choice on Gradescope.
(O Unselected option
@ Only one selected option
For questions with square checkboxes, you may select one or more choices on Gradescope.
M You can select
B multiple squares

For questions with a large box, you need write and label your answer in the corresponding text box on
Gradescope.

You have 110 minutes, plus a 10 minute buffer, for a total of 120 minutes. There are 7 questions of varying
credit (120 points total).

The exam is open note. You can use an unlimited number of handwritten cheat sheets, but you must work
alone.

Clarifications will be posted at https://cs161.org/clarifications.

Q1 MANDATORY - Honor Code (2 points)

Read the following honor code and type your name on Gradescope. Failure to do so will result
in a grade of 0 for this exam.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way:. I
am aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic
misconduct will be reported to the Center for Student Conduct and may further result in, at
minimum, negative points on the exam.

Solution: Don’t worry if you forgot to fill in your name. Everyone gets 2 free points for embracing
the suck this semester.

We also won’t take any points off if you entered something in a text box for a multiple-choice
question, or if you bubbled in some options for a free-response question, or if you filled something
in for a question that doesn’t exist on your randomized form. To be consistent, we will not consider
any unnecessary writing/bubbling on your exam during grading (pretend it’s scratch work).

This is the end of Q1. Proceed to Q2 on your answer sheet.

Page 1 of 22

https://cs161.org/clarifications

Q2 True/false (30 points)
Each true/false is worth 2 points.

Q2.1

Q2.2

Q2.3

Q2.4

Q2.5

Midterm

TRUE or FALsE: Pointer authentication prevents all buffer overflow attacks.

QO Truk @ Faise

Solution: False. If you never overwrite a pointer (e.g. rip, sfp, program-allocated pointer
on the stack), your exploit won’t be detected. Remember, the only way to prevent all buffer
overflow attacks is to use a memory-safe language.

TRUE or FALsE: The RET2ESP (Return to ESP) exploit from Project 1, Question 6 does not require
knowing the absolute address of the shellcode when crafting the exploit.

@ Tru: O FaLse

Solution: True. The RET2ESP technique works even when ASLR is enabled, a case in which
we don’t know what the exact address of the shellcode is.

TRUE or FALsE: The function f(x) = 1 is a one-way function, since we can’t go from 1 to our
original value of z.

QO Truk @ Faise

Solution: False. One-way functions are defined as "given f(z) = y, it is hard to find any
x’ such that f(2') = /. This is false for f(x) = 1, since you can pick any value and satisfy

fz) = f(&).

TRUE or FALsE: EvanBot designs custom buffer overflow protection that blocks all writes to RIP’s
and SFP’s. This is a successful defense against all buffer overflow attacks.

O TRUE . FALSE

Solution: False. We can still overwrite other values on our stack (e.g. an "authenticated" flag).

TRUE or FaLsEk: Using fgets(buf, size, ...) instead of gets(buf) always prevents an
attacker from overflowing buf.

QO Truk @ Faise

Solution: False. It’s still possible for us to have an integer conversion vulnerability, where
the value of size is greater than the actual value of the buffer (we saw this in the project!).

Many people asked in clarifications whether size is guaranteed to match the size of buf,
which caused Nick to say... Do you always use fgets correctly?"

Page 2 of 22 CS 161 - Fall 2020

Q2.6

Q2.7

Q2.8

02.9

Q2.10

02.11

Midterm

TRUE or Farsk: Diffie-Hellman is a protocol for sending messages confidentially between two
people who don’t share a key.

O True @ Faise

Solution: False. Diffie-Hellman is a key exchange protocol that allows two people to agree
on a shared secret key. There is no message being sent in the Diffie-Hellman protocol.

TRUE or FALsE: The El Gamal protocol from lecture guarantees integrity.

QO True @ Faise

Solution: False. As seen in Homework 2, an attacker could change the ciphertext (c1, ¢2) to
be (c1,2cg), causing the recipient to see the message 2z instead of z. There is no way for the
recipient to detect this, so El Gamal does not guarantee integrity.

TRUE or FALSE: When using CBC mode, we need to pad messages because the block cipher takes
a fixed-length input.

@ Tru: O Farsk

Solution: True. As seen in Homework 2 and Lab 1, CBC mode breaks the plaintext up into
blocks and passes each block through block cipher encryption, and since the block cipher takes
a fixed-length input, we need the plaintext length to be a multiple of the block size.

TRUE or FALsE: Kerckhoffs’s principle assumes that everything about a cryptographic system,
including the key, is public knowledge.

QO Truk @ Faise

Solution: False. Everything except the key is public knowledge.

TRUE or FALSE: Slower hashes are useful for password hashing.

@ Tru: O Farsk

Solution: True. A slower hash only costs a legitimate user an additional fraction of a second
to check their legitimate password, but it increases the cost for an attacker performing a
dictionary/brute-force attack by a huge constant factor.

TRUE or FALSE: In a digital signature scheme, the verifying key is private, and the signing key is
public.

Page 3 of 22 CS 161 - Fall 2020

O True @ Faise

Solution: False. The signing key is private, so only the owner of the signing key can generate
valid signatures. The verifying key is public, so everyone can verify signatures.

Q2.12 TrRUE or FALSE: A 64-bit stack canary on a 64-bit processor provides more protection than a
32-bit stack canary on a 32-bit processor.

@ Tru: O FaLse

Solution: True. A 64-bit random canary is harder to guess by brute-force than a 32-bit random
canary. There is no security disadvantage from having a longer stack canary (although there
might be negligible performance impact).

Q2.13 TRUE or FALSE: Security is economics, so you should generally not use a $100 lock to secure a
$10 product.

@ Tru: O Farsk

Solution: True. As seen in Homework 1, a rational consumer should not spend more on the
lock than the product.

Q2.14 TrUE or FALSE: The confidentiality of El Gamal is compromised if r, the random value chosen
for each message sent, is public.

@ Tru: O Farsk

Solution: True. The attacker can recover the original message by multiplying ¢y by A™".

Q2.15 TRUE or FALsE: RSA encryption without padding is IND-CPA secure.

O TRUE . FALSE

Solution: False. RSA encryption without padding, as seen in lecture (and CS70), is not CPA
secure because it is deterministic.

This is the end of Q2. Proceed to Q3 on your answer sheet.

Midterm Page 4 of 22 CS 161 - Fall 2020

Q3 MAC Madness (18 points)
Evan wants to store a list of every CS161 student’s firstname and lastname, but he is afraid Mallory
will tamper with his list.

Evan is considering adding a cryptographic value to each record to ensure its integrity. For each scheme,
determine what Mallory can do without being detected.

Assume MAC is a secure MAC, H is a cryptographic hash, and Mallory does not know Evan’s secret key k.
Assume that firstname and lastname are all lowercase and alphabetic (no numbers or special characters),
and concatenation does not add any delimiter (e.g. a space or tab), so nick||weaver = nickweaver.

Clarifications during the exam: Bob is storing the names with the cryptographic value in the database.
Duplicate records are not allowed. Mallory can change anything in the database. “A value of her
choosing” means any arbitrary value.

Q3.1 (3 points) H(firstname||lastname)

@ (A) Mallory can modify a record to be a value of her choosing
QO (B) Mallory can modify a record to be a specific value (not necessarily of her choosing)

QO (C) Mallory cannot modify a record without being detected

Solution: Anybody can hash a value, so Mallory could change a record to be whatever she
wants and compute the hash of her new record.

Q3.2 (3 points) MAC(k, firstname||lastname)
Hint: Can you think of two different records that would have the same MAC?

QO (G) Mallory can modify a record to be a value of her choosing
@ (H) Mallory can modify a record to be a specific value (not necessarily of her choosing)

QO (1) Mallory cannot modify a record without being detected

Midterm Page 5 of 22 CS 161 - Fall 2020

Solution: Because the concatenation doesn’t have any indicator of where the first name ends
and the last name begins, Mallory could shift some letters between the first name and last
name. For example, she could change the name Nick Weaver to Ni Ckweaver, Nic Kweaver,
Nickw Eaver, etc. Since the MAC would remain unchanged, this edit would be undetectable.

Q3.3 (3 points) MAC(k, firstname||"-"||lastname), where "-" is a hyphen character.

O (A) Mallory can modify a record to be a value of her choosing
QO (B) Mallory can modify a record to be a specific value (not necessarily of her choosing)

@ (C) Mallory cannot modify a record without being detected

Solution: Now, the concatenation includes a separator between first name and last name, so
the attack from the previous part is no longer possible. Note that names are alphabetical, so
they would never include a dash in them.

Q3.4 (3 points) MAC(k, H(firstname)||H(lastname))
QO (G) Mallory can modify a record to be a value of her choosing

QO (H) Mallory can modify a record to be a specific value (not necessarily of her choosing)

@ (D) Mallory cannot modify a record without being detected

Solution: Hashes have fixed-length output, so the attack from the previous part (shifting
letters between the first and last name) is not possible here either. It will always be unambiguous
where the first hash ends and the second hash begins.

Also, since both hashes are used as input to a single MAC, there is no way for an attacker
without the key to generate a valid MAC for any different name.

Q3.5 (3 points) MAC(k, firstname)||[MAC(k, lastname)
QO (A) Mallory can modify a record to be a value of her choosing

Midterm Page 6 of 22 CS 161 - Fall 2020

@ (B) Mallory can modify a record to be a specific value (not necessarily of her choosing)

QO (C) Mallory cannot modify a record without being detected

Solution: Because the first name and last name have separate MACs, Mallory could swap the
first name and last name, and swap the two halves of the MAC.

In other words, Mallory could change the name Nick Weaver to Weaver Nick, and change the
MAC from MAC(k, nick)||[MAC(k, weaver) to MAC(k, weaver)||MAC(k, nick).

Q3.6 (3 points) Which of Evan’s schemes guarantee confidentiality on his records?

QO (G) All 5 schemes @ () None of the schemes
QO (H) Only the schemes with a MAC

QO () Only the schemes with a hash

Solution: MACs and hashes do not have any confidentiality guarantees.

This is the end of Q3. Proceed to Q4 on your answer sheet.

Midterm Page 7 of 22 CS 161 - Fall 2020

Q4 Socially Distanced Cipher (18 points)
Bob and Alice want to plan a social distancing picnic, but don’t want to invite Eve because she hasn’t
been wearing a mask in public. They decide to send messages using a new block cipher chaining mode,
AES-SDC (Socially Distanced Cipher). Note that AES-SDC requires a different key for each block of the
message.

Co=1V
Ci = E,(Cic1 @ i) @ P

I

1—P 2—O 3—>D
Block cipher Block cipher Block cipher
Ky —| encryption Ky — encryption Ks — encryption

Plaintext P, —>$ Plaintext P, [—— @ Plaintext P; [—— @
Ciphertext C; |— Ciphertext C, |— Ciphertext C;

Q4.1 (3 points) Which of the following is the correct decryption expression/diagram for AES-SDC?
Q@) P, =E,(P_1®i) ®C;

I

1—P 2—O 3—>D
Block cipher Block cipher Block cipher
Ky —| encryption Ky — encryption Ks — encryption

Ciphertext C, —>$ Ciphertext C, |[—— @ Ciphertext C; [—— @
Plaintext P; |— Plaintext P, [~ Plaintext P,

O(B) P; = Dy, (Pi—1 ®1) @ C;

I

1—P 2—O 3—>D
Block cipher Block cipher Block cipher
Ky —| decryption Ky — decryption Ks — decryption

Ciphertext C, —>$ Ciphertext C, |[—— @ Ciphertext C; [—— @
Plaintext P; |— Plaintext P, [~ Plaintext P,

Midterm Page 8 of 22 CS 161 - Fall 2020

@O r=LE,Ciasi)ad

1 |

1—P 2—O0D 3—O>D
Block cipher Block cipher Block cipher
Ky —| encryption Ky — encryption Ks — encryption

Ciphertext C, —>$ Ciphertext C, —>$ Ciphertext C; —>$
Plaintext P, Plaintext P, Plaintext P,

Q D) P, = Dy, (Ci—1 &) & C;

1 |

1—P 2—O0D 3—O>D
Block cipher Block cipher Block cipher
Ky —| decryption Ky — decryption Ks — decryption

Ciphertext C, —>$ Ciphertext C, —>$ Ciphertext C; —>$
Plaintext P, Plaintext P, Plaintext P,

Solution: In equations: To solve for P;, XOR both sides of the encryption expression: C; &
By (Ciy @) = P

In pictures: Observing the three-way XOR junctions, we see that to retrieve the plaintext, we
need to XOR the ciphertext with the block cipher encryption (not decryption) output. This
rules out options (B) and (D). The input to the block cipher encryption is the ciphertext, not
the plaintext, which rules out options (A) and (B). Thus option (C) is the correct answer.

Q4.2 (3 points) Select all true statements about this encryption scheme.

Hint: The cipher mode you saw in Homework 2, C; = Ey(C;_1) & P;, is IND-CPA secure.

O (G) Encryption can be parallelized B (D) It is IND-CPA secure

B (H) Decryption can be parallelized O (J) None of the above

Midterm Page 9 of 22 CS 161 - Fall 2020

Solution: Encryption cannot be parallelized, because calculating a ciphertext block C; requires
the previous ciphertext block C;_ to be calculated first.

Decryption can be parallelized, because calculating a plaintext block F; only requires ciphertext
blocks C; and C);_1, which are already known before decryption starts.

The scheme is IND-CPA secure. Intuitively, AES-SDC is the same as the cipher mode from
Homework 2, with two differences. First, a different key is used for each block cipher. This
doesn’t affect IND-CPA security because the attacker still doesn’t know any of the secret keys.
Second, a counter is added before encryption. This also doesn’t affect IND-CPA security, since
the output of a block cipher looks random to an attacker without the key, regardless of whether
the input is XOR’d with a counter.

Suppose Alice loses some of her shared keys with Bob. Alice wants to encrypt an n-block message
using AES-SDC. For each scenario below, determine which blocks Alice can still encrypt.

Q4.3 (3 points) Alice has all the keys except k4 and ks.

@ (A) Alice can encrypt all parts of her message except P and P;
@ (B) Alice can encrypt P;, P, and P; only.

QO (C) Alice can encrypt the entire message

QO (D) Alice cannot encrypt any block of the message

QO (E) None of the above

Solution: The intended answer was (B). Without k4 and k5, Alice cannot run the block cipher
encryptions needed to output Cy and C5. Since Cj is used as an input to further block cipher
encryptions, all blocks after C's cannot be encrypted either.

Someone in clarifications found an alternate solution to this part. If Alice doesn’t know k4
and k5 and substitutes random/garbage values for the missing keys, then the corresponding
ciphertexts Cy and C5 end up being random garbage as well. However, since C’ is random
garbage and is fed to the next encryption block, it can be used as an IV for future encryptions,
which causes the rest of the encryption to be correct, even if Bob doesn’t know what garbage
values Alice used for k4 and ks!

We accepted both (A) and (B) as correct answers for full credit.

Now, suppose Alice now has all the keys, and Alice sends a n-block message to Bob. Eve learns some
keys and some blocks of ciphertext. For each scenario below, determine which blocks Eve can decrypt.

Clarification during exam: Eve knows the index of all keys and ciphertext blocks that she learns.

Midterm Page 10 of 22 CS 161 - Fall 2020

Q4.4 (3 points) Eve learns the IV, ciphertext blocks C5 and Cf, and key ks.
QO (G) Eve can decrypt C5 only

(O (H) Eve can decrypt C5 and Cg only
QO () Eve can decrypt all messages intercepted
@ () Eve cannot decrypt any intercepted messages

QO (K) None of the above

Solution: In order to decrypt a ciphertext C;, Eve needs to gain access to both C;_1 as well
as k;.

To decrypt Cs, Eve would need kg, which she doesn’t have, and to decrypt C, Eve would need
kv, which she also doesn’t have. Thus Eve can’t decrypt any intercepted messages.

Someone in clarifications noted that options H and I are technically equivalent, since C5 and
Cp are the only messages Eve intercepts. However, neither is the correct answer choice, so
this didn’t affect our grading. Sorry if this caused any confusion.

Q4.5 (3 points) Eve learns the IV, ciphertext blocks C5, C'3, and Cs, and keys ko, k3, and ks.
(O (A) Eve can decrypt C'3 and C5 only

QO (B) Eve can decrypt Cy, C3, C5 only
(C) Eve can decrypt C5, C3, Cy, C5 onl
yp y
@ (D) Eve can decrypt Cs3 only
E) Eve cannot decrypt any intercepted messages
ypt any P g

QO (F) None of the above

Solution: Using the same reasoning as the previous part, Eve has Cy, C3, and k3, so she can

decrypt Cs.

To decrypt Cs, Eve would need C', which she doesn’t have, and to decrypt C5, Eve would
need C4, which she also doesn’t have.

Q4.6 (3 points) Bob receives all the keys and ciphertext blocks C} through C),, but C3 is corrupted.
Which plaintext blocks can Bob successfully decrypt?

Clarification during exam: “Bob receives all the keys and ciphertext blocks C; through C},” should
be “ciphertext blocks Cy through C,,”

Midterm Page 11 of 22 CS 161 - Fall 2020

(G) Bob can successfully decrypt all blocks except C3
y yp p
(H) Bob can successfully decrypt all blocks except Cy
y yp p
QO (1) Bob can successfully decrypt all blocks except C1, Co, C3
@ ()) Bob can successfully decrypt all blocks except C'3 and Cy
QO (K) Bob cannot successfully decrypt any of the blocks

QO (L) None of the above

Solution: The same reasoning from the previous parts applies here as well, where Bob has
all the keys and all the ciphertexts, except C's.

(35 is needed in the decryption of C'5 and Cy, so Bob can’t decrypt these two blocks. Bob can
decrypt all other blocks.

This is the end of Q4. Proceed to Q5 on your answer sheet.

Midterm Page 12 of 22 CS 161 - Fall 2020

Q5 Hacked EvanBot (16 points)
Hacked EvanBot is running code to violate students’ privacy, and it’s up to you to disable it before it’s
too late!

#include <stdio .h>

void spy_on_students(void) {
char buffer[16];
fread (buffer, 1, 24, stdin);

}

int main () {
spy_on_students () ;

10 return 0;

1]}

O 0 I O U A W N

The shutdown code for Hacked EvanBot is located at address Oxdeadbeef, but there’s just one problem—
Bot has learned a new memory safety defense. Before returning from a function, it will check that its
saved return address (rip) is not 0Oxdeadbeef, and throw an error if the rip is Oxdeadbeef.

Clarification during exam: Assume little-endian x86 for all questions.

Assume all x86 instructions are 8 bytes long. ! Assume all compiler optimizations and buffer overflow
defenses are disabled.

The address of buffer is Oxbf£f££110.

Q5.1 (3 points) In the next 3 subparts, you’ll supply a malicious input to the fread call at line 5 that
causes the program to execute instructions at 0xdeadbeef, without overwriting the rip with the
value Oxdeadbeef.

The first part of your input should be a single assembly instruction. What is the instruction? x86
pseudocode or a brief description of what the instruction should do (5 words max) is fine.

Solution: jmp *0xdeadbeef

You can’t overwrite the rip with 0xdeadbeef, but you can still overwrite the rip to point at
arbitrary instructions located somewhere else. The idea here is to overwrite the rip to execute
instructions in the buffer, and write a single jump instruction that starts executing code at
Oxdeadbeef.

Grading: most likely all or nothing, with some leniency as long as you mention something
about jumping to address Oxdeadbeef. We will consider alternate solutions, though.

Q5.2 (3 points) The second part of your input should be some garbage bytes. How many garbage bytes
do you need to write?

'In practice, x86 instructions are variable-length.

Midterm Page 13 of 22 CS 161 - Fall 2020

OQ©o Om)4 Oms @012 OK) 16

Solution: After the 8-byte instruction from the previous part, we need another 8 bytes to fill
buffer, and then another 4 bytes to overwrite the sfp, for a total of 12 garbage bytes.

Q5.3 (3 points) What are the last 4 bytes of your input? Write your answer in Project 1 Python syntax,
e.g. \x12\x34\x56\x78.

Solution: \x10\xf1\xff\xbf

This is the address of the jump instruction at the beginning of buffer. (The address may be
slightly different on randomized versions of this exam.)

Partial credit for writing the address backwards.

Q5.4 (3 points) When does your exploit start executing instructions at 0xdeadbeef?

QO (G) Immediately when the program starts
QO (H) When the main function returns
@ () When the spy_on_students function returns

(O (J) When the fread function returns

Solution: The exploit overwrites the rip of spy_on_students, so when the spy_on_students
function returns, the program will jump to the overwritten rip and start executing arbitrary
instructions.

Q5.5 (4 points) Which of the following defenses would stop your exploit from the previous parts?
Il (A) Non-executable pages (also called DEP, WX, and the NX bit)

B (B) Stack canaries
Il (C) ASLR
M (D) Rewrite the code in a memory-safe language

[(E) None of the above

Midterm Page 14 of 22 CS 161 - Fall 2020

Solution: Non-executable pages prevents the exploit because the exploit requires executing
the jmp instruction that was written on the stack.

Stack canaries prevent the exploit because the exploit will overwrite the canary between
buffer and the rip.

ASLR prevents the exploit because the exploit requires overwriting the rip with a known
address on the stack.

Many people asked in clarifications if ASLR would change the address of the shutdown
code at Oxdeadbeef. We didn’t answer this clarification because it doesn’t affect the correct
answer choice here: even if you knew the absolute address of the shutdown code, you couldn’t
overwrite the rip with the address of the buffer on the stack, because ASLR would randomize
addresses on the stack.

Using a memory-safe language always prevents buffer overflow attacks.

This is the end of Q5. Proceed to Q6 on your answer sheet.

Midterm Page 15 of 22 CS 161 - Fall 2020

Q6 Chegg (17 points)
Engineers at Chegg are analyzing different password management techniques. Unfortunately, the
engineers at Chegg used Chegg to make it through CS 161, so they don’t remember anything they
learned!

Q6.1

06.2

06.3

Midterm

(3 points) Suppose there is an offline attacker (with access to the hashed passwords file) and an
online attacker (without access to the hashed passwords file). Chegg implements a CAPTCHA on
its login page. Which attacker(s) does the CAPTCHA prevent from performing a dictionary attack?

Clarification during exam: “prevent from performing a dictionary attack” means make the attack
significantly more expensive.

QO (A) The offline attacker only O (D) Neither attacker
@ (B) The online attacker only

QO (C) Both attackers

Solution: The CAPTCHA makes the attack significantly more difficult for the online attacker,
who would have to fill out a CAPTCHA every time they try a guess at the password.

However, it would not stop the offline attacker, since they already have access to all the hashed
passwords.

(3 points) Instead of salting each password hash, Chegg engineers XOR the hashed password with
the account creation timestamp and store the XOR’d password hash with the timestamp in their
database.

True or false: This successfully prevents an offline attacker from performing a dictionary attack.

Clarification during exam: The timestamp and the XOR’d password hash are both stored in the
database. The offline attacker has the entire database.

O (G) True @ (H) False

Solution: False. An attacker could simply XOR each hash with the account creation timestamp
to retrieve the original unsalted hash, which would be susceptible to dictionary attacks.

(4 points) One of Chegg’s competitors, Course Hero, has been compromised, and all of their user
accounts and passwords have been leaked in plaintext. Select all defenses that Chegg could use to
protect students who use the same password for Chegg and Course Hero.

[(A) Use a slow hash function
O (B) Include a salt in the password hash e.g. store a tuple of (salt, H(salt||password))

B (C) Require every login attempt to also provide a random code sent by a secure SMS to the
registered user’s phone (a secure second factor)

Page 16 of 22 CS 161 - Fall 2020

[(D) During the account creation phase, require every password to end with -CHEGG

[(E) None of the above

Solution: A slow hash function, salted hashes, and passwords ending in -CHEGG all do nothing
to stop an attacker who knows the plaintext passwords.

Two-factor authentication is the only valid defense here. Now, an attacker can’t use the leaked
passwords to log into the user’s Chegg account, because they don’t have the random code sent
to the user’s phone.

Some people asked in clarifications whether the attacker knows which password corresponds
to which user. This doesn’t change the answer, because even if the attacker doesn’t have a
mapping of users to passwords, the list of passwords still significantly reduces the search space
for an attacker to try logins to Chegg accounts.

Chegg uses a certificate chain in order to verify tutors. When tutors post responses, they attach a
digital signature of their response along with their certificate. Students can verify the authenticity of a
response by verifying the certificate and using the public key in the certificate to verify the signature.

The certificate chain is below. Assume that the Chegg Root Certificate Authority (CA) is hardcoded
into students’ browsers.

1. Identity: Director of Chegg Recruiting (Verified by Chegg Root CA)
2. Identity: Campus Chegg Recruiter (Verified by Director of Chegg Recruiting)
3. Identity: Authorized Tutor (Verified by Campus Chegg Recruiter)

Q6.4 (4 points) EvanBot is not a valid tutor, but wants to create a fake tutor response with a valid
signature. Which of these attacks would allow Bot to accomplish this?

O (G) Steal the public key of the Campus Chegg Recruiter

B (H) Steal the private key of the Director of Chegg Recruiting
B (I) Steal the private key of the Chegg Root CA

[(J) Steal the certificate of an authorized tutor

[(K) None of the above

Solution: Public keys and certificates are public and well-known, so an attacker who steals
them can’t do anything to forge a message.

Stealing the private key of any individual in the certificate chain above the Authorized Tutor
level allows EvanBot to create a forged certificate with a valid signature.

Midterm Page 17 of 22 CS 161 - Fall 2020

For example, EvanBot can use the private key of the Director of Chegg Recruiting to sign a
certificate for a fake Campus Chegg Recruiter made up by EvanBot. Then, EvanBot uses the
private key of the made-up Campus Chegg Recruiter to sign a certificate of a fake tutor. Finally,
EvanBot can use the private key of the fake tutor to sign a tutor response.

Q6.5 (3 points) EvanBot gains access to the private key of Dave, who is an authorized tutor. Which of
the following can EvanBot do?

[(A) Post a valid response as Nick, an existing tutor
B (B) Post a valid response as Dave
[(C) Create and sign a certificate for Raluca, a new tutor

[(D) None of the above

Solution: Dave’s private key cannot be used to sign messages as Nick, who would have a
different private key.

Dave’s private key can be used to sign messages as Dave.

Dave’s private key is at the tutor level (the lowest level of the certificate chain), so it cannot be
used to sign certificates.

This is the end of Q6. Proceed to Q7 on your answer sheet.

Midterm Page 18 of 22 CS 161 - Fall 2020

Q7 Stack Exchange (19 points)
Consider the following vulnerable C code:

1| #include <byteswap.h>

2| #include <inttypes.h>

3|#include <stdio.h>

4

5/ void prepare_input(void) {

6 char buffer[64];

7 int64_t «ptr;

8

9 printf ("What is the buffer?\n");

10 fread (buffer, 1, 68, stdin);

11

12 printf("What is the pointer?\n");

13 fread (&ptr, 1, sizeof(uint64_t «), stdin);
14

15 if (ptr < buffer || ptr >= buffer + 68) {
16 printf ("Pointer is outside buffer!");
17 return ;

18 }

19

20 /+ Reverse 8 bytes of memory at the address ptr =/
21 «ptr = bswap_64 («ptr);

22|}

23

24| int main(void) {

25 prepare_input () ;

26 return 0;

27|}

The bswap_64 function takes in 8 bytes and returns the 8 bytes in reverse order.

Assume that the code is run on a 32-bit system, no memory safety defenses are enabled, and there are
no exception handlers, saved registers, or compiler padding.

Q7.1 (3 points) Fill in the numbered blanks on the following stack diagram for prepare_input.

0xbff££494)
0xb£f££490)
0xbff££450)
0xbffffaac)

QO (A) 1=sfp,2=rip, 3 = buffer, 4 = ptr QD) 1=rip, 2= sfp, 3 =ptr, 4 = buffer

B W N =
N N N N

QO ®B)1=sfp,2=rip, 3 =ptr, 4 = buffer

@ (O 1 =rip, 2 = sfp, 3 = buffer, 4 = ptr

2Technically, this is a macro, not a function.

Midterm Page 19 of 22 CS 161 - Fall 2020

Q7.2

Q7.3

Q7.4

Q7.5

Midterm

Solution: The rip is pushed onto the stack first, followed by the sfp, followed by the first local
variable buffer, followed by the second local variable ptr. (Remember that local variables are
placed on the stack, highest-to-lowest address, in the order they are defined in the code.)

(4 points) Which of these values on the stack can the attacker write to at lines 10 and 13? Select all
that apply.

M (G) buffer OQ) rip

B (H) ptr O (K) None of the above

W) sfp

Solution: At line 10, the attacker can write 68 bytes starting at buffer. This overwrites all
64 bytes buffer and the 4 bytes directly above it, which is the s£p.

At line 13, the attacker can write exactly 1 uint64_t * into ptr. This overwrites ptr, and
nothing else.

Notice that the rip cannot be directly overwritten.

(3 points) Give an input that would cause this program to execute shellcode. At line 10, first input
these bytes:
@ (2) 64-byte shellcode O (D) \xbfA\xff\xf4\x50
QO (B) \xbf\xff\xf4\x4c QO (E) \x50\xf4\x£f\xbf
O (©) \x4c\xf4\xff\xbf
(3 points) Then input these bytes:
O (G) 64-byte shellcode @ () \xbf\xff\xf4\x50
O (H) \xbf\xff\xf4\x4c O (K) \x50\xf4\xff\xbf
O () \x4c\xfa\xff\xbf
(3 points) At line 13, input these bytes:
O (A) \xbf\xff\xf4\x50 @ (D) \x90\xf4\xff\xbf
O (B) \x50\xf4\xff\xbf O (E) \xbf\xff\xf4\x94
QO (©) \xbf\xff\xf4\x90 O (F) \x94\xf4\xff\xbf
Page 20 of 22 CS 161 - Fall 2020

Solution: Line 10 writes 68 bytes into the 64-byte buffer, which lets us overwrite the sfp, but
not the rip.

Line 13 lets us write a value into ptr, which is then dereferenced in a call to bswap_64. This
lets us reverse any 8 bytes in memory we want, as long as they are between buffer and
buffer + 68, i.e. in the buffer or sfp.

The overarching idea here is to write the address of shellcode in the sfp, and then use the call
to bswap_64 to swap the sfp and the rip.

First, we write the 64 bytes of shellcode into the buffer. Then, we overwrite the sfp with
\xbf\xff\x£f4\x50. These bytes are written backwards because bswap_64 will reverse all 8
bytes of the sfp and the rip. Finally, we write the address of the sfp, \x90\x£4\x£f£f\xbf{, into
ptr. These bytes are written normally because bswap_64 never affects ptr.

Suppose the current rip is Oxdeadbeef. Our input causes the 8 bytes starting at the sfp to be
\xbf\xff\xf4\x50\xef\xbe\xad\xde. When we call bswap_64 at the location of sfp, the
8 bytes starting at sfp are reversed, so they are now \xde\xad\xbe\xef\x50\xf4\xff\xbf.
Notice that the rip is now pointing to the address of shellcode in the correct little-endian order.
Also note that the original rip has been swapped into the sfp and is now backwards, although
we don’t care because the rip has already been overwritten.

Note: Because you can overwrite the sfp, you might be tempted to use the off-by-one exploit
from Q4 of Project 1. However, this does not work here because you need enough space to
write the shellcode and the address of shellcode in the buffer, but the buffer only has space for
the shellcode.

Partial credit for Q7.4 option (K) and Q7.5 option (C) (correct address, but backwards).

Q7.6 (3 points) Suppose you replace 68 with 64 at line 10 and line 15. Is this modified code memory-safe?

O (G) Yes @ 1) No

Solution: This is still not memory-safe. If you make ptr point at one of the last 4 bytes of
buffer, the check at line 15 will pass, but it will cause part of the sfp to be overwritten. For
example, if ptr is located 4 bytes before the end of buffer, the last 4 bytes of buffer will be
swapped into the sfp.

Because you can overwrite the sfp, you could still exploit this modified code using the technique
from Project 1, Question 4 (although as mentioned above, you would need shorter shellcode).
Regardless of what shellcode you use, since this code lets you write to the sfp (outside the
bounds of buffer), it is not memory-safe.

This is the end of Q7. You have reached the end of the exam.

Midterm Page 21 of 22 CS 161 - Fall 2020

C Function Deﬁnitions
bswap_64(x);

Returns a value in which the order of the bytes in its 8-byte argument
is reversed.

char *fgets(char *s, int size, FILE *stream);

fgets() reads in at most one less than size characters from stream and
stores them into the buffer pointed to by s. Reading stops after an
EOF or a newline. If a newline is read, it is stored into the buffer.
A terminating null byte ('\0') is stored after the last character in
the buffer.

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
The function fread() reads nmemb items of data, each size bytes long,
from the stream pointed to by stream, storing them at the location

given by ptr.

Note that fread() does not add a null byte after input.

Midterm Page 22 of 22 CS 161 - Fall 2020

