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1 Problem 1
(a)

As a linear gas molecule with negligible vibrational energy, there are 5 degrees of freedom, and

hence v = % ~ %

The gas starts at P4 and V4. Then the ideal gas law gives the temperature as

PyVa
Ty = . 1.1
A nR (1.1)

After isobaric expansion to B, by definition, P = P4. At this point, we don’t know Vg and hence
don’t know T'g, so let’s consider the next process. After the adiabatic expansion, the gas is at Po
and V¢, where P is given. Because the process is adiabatic, we have PgVj = Pch.

We don’t know Vp yet, so let’s consider the final process: an isothermal compression from V¢ to
V4. Because the compression is isothermal, we must have that T = T4. Then applying the ideal
gas law, we find

nRTy Py
= —Vj.
Pc Pc

Then we can now determine Vp using the adiabatic condition:

Vo = (1.2)




(b)
We want to determine the heat in each process. For A — B, we have Qg = nCpAT = %nR(TB —

1/3
Ty) = % [(ﬁg) — 1} P4V > 0. In the process B — C, we have Qpc = 0. In the process

B — C, we have Qca = nRT 4 1In (“%) =nRT4ln (%) = PsV4aln (%) < 0. Then the efficiency

is
Qnet % [(gg) v 1} +In (%)
n =

= = 3 ) (1.5)
Qin 7 [(PA>1/5 - 1]
2 |\ Pc
(c)
Plugging in P4 = 8F¢:
7721_—21“(8) -8 2 (1.6)
7 [(8)1/3 . 1} 7 10 5
The ideal Carnot efficiency is given by
Teold T (P )1/3 1
e Thot Tp Py 2 (.7

So nc > 1, as expected.

2 Problem 2
(a)

The electric field should be perpendicular to the conducting plane. Therefore, the potential should
be constant very near the surface, and hence V = 0. The perpendicular condition then requires
E,=FE, =0, while I, = % is just the electric field from a charged conductor.

(b)

We should place a point charge of charge —q at z =y = 0 and z = —d.

(c)

The potential will just be the superposition of the two point charges:

V(e,y,z) = 2 ( ! ! > (2.1)
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(d)

The technique we will use is to determine the electric field near z = 0, and then use that to
determine o. Evidently, we need only consider E,, so:

ov

E 0)=—— 2.2
Z(x7 y‘) ) az 0 ( )
_q ( z+d B z—d ) (2.3)
dreg \ (22 4+ 32 + (2 +d)2)3/2 (@2 +y2 + (2 —d)2)32 ) __, '
q d
= — 2.4
2meq (22 + y2 + d?)3/2 (2.4)
o
=—. 2.5
z (25)
And we hence find p
q
= — ) 2.6
7 27 (22 + y? + d?)3/2 (26)
3 Problem 3
(a)
Replace the capacitor with a capacitor and a resistor in parallel.
(b)
YRR .-
I C
U +p'f@ g‘
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Vo
We apply Kirchhoff’s loop law to the loop created by resistor R and the capacitor. We get
Vo—Vo—(Ii + )R =0, (3.1)

where Vo = % is the voltage drop of the capacitor and @ is the charge on the capacitor. We
therefore have I = . Consider now the loop formed within the parallel circuit:

LR, — Vo =0, (3.2)
so I, = % = C%i' The first loop equation now reads:
Q . Q _
Vi c Q-+ CR, R=0. (3.3)
Rewriting into standard form:
. R+R;, W
_ 0 A4
O+ Qepr 7 =0 (3.4)
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which we can solve with the initial condition Q(0) = 0:

R; -
Q) = Vo0 p (1-¢77). (3.5)

_ _RR;
where 7 = R+RiC'

(c)

The maximum charge is obtained for t — oo, from which we see ) — CVO%. We saw the time
constant 7 has a dependence on R; as 7 = RﬁRéiC. This is nothing more than replacing the value
of R in the standard RC circuit with the equivalent resistance of the internal resistor and series
resistor in parallel. Note that 25 < R, so the time constant has been reduced, and the capacitor

R+R;
will charge more quickly.

(d)

Consider R 1 Vv
(0) = VpC o™= 2,
QO =W R T = R
The ideal limit of the capacitor is given by taking R; — oo, from which we obtain the standard RC
circuit equation:

(3.6)

Q@%=%C(I—€“ﬂ, (3.7)
with 7 = RC. We then see Ve v
. _WC _ W

and we hence find that the initial charging rate in each case is the same.

4 Problem 4
(a)

Let us first determine the magnetic field on the symmetry axis of a ring of radius r with current I.
The Biot-Savart law says

— _sing=tH0C T (4.1)

and integrating around the ring then gives
_ kol r’

B: 2 (r2+22)3/2'

(4.2)

Now consider the ribbon as being constructed from several such rings layered on each other. That
is, each ring has an infinitesimal current d/ running through it, where dI = J da, where J is the
“current density,” or the current that passes through a cross-section of the ribbon da. Because the
current is uniformly distributed, we have J = L. Then we have:

wt”

_ podl r? _ od r

2 2
2 (r2422)32 2 (r2+22>3/2da: (r2 + 22)3/2

dB, drd?’, (4.3)
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where the z’-direction is the same as the z-direction. Then we integrate this to obtain the final

magnetic field
Ry pt/2 J t 2 I R> 2
BZ = / Ho D) v TQ QdZ/ dr = /LO/ ﬁdr (44)
R Joip 2 (rP4z )3/ 2w Jp, (r?+4z )3/

By symmetry, this is the only non-zero component of the magnetic field.

(b)

The applied magnetic field will act on the moving charges, causing them to build up on one side of
the ring. The build-up will generate an electric field on the conductor that will stabilize the charges
against the magnetic force.

(c)
We can directly compute the drift velocity of the free charges:
I I

= = ) 4.5
YT A T enwt (45)
The magnetic force magnitude on these charges is then
1B
Fg=cv,B=—". 4.6
B = el nwt (4.6)
In equilibrium, this is equal in magnitude to the electric force:
1B
Fr=_-" —¢E. 4.
Bt c (47)
Then we can immediately compute the Hall voltage from the electric field:
1B
Vg =wE = —. 4.8
= net (48)

By the RHR, the (negative) charges are gathering on the outside edge of the ring, and hence the
inner edge of the ring will have a higher potential.

(d)

We showed above:

Vi = wE = “Fp = “Fp = wuyB, (4.9)
e e
and hence v
H
_ YH 4.10
vd wB ( )
5 Problem 5

()

The current in the loop is due to the time-dependence of the current density js. The current density
generates a magnetic field that has a non-zero flux through the loop. Because j, is time-dependent,
so too is the flux, and hence by Faraday’s law there is a current generated.

The sheet generates a field pointing out of the page. By Lenz’s Law, a CCW current would be
generated due to the flux of the magnetic field decreasing.



(b)

The induced emf obeys £ = I R, and is also given by Faraday’s law & = —%. We can write this:
B
— %t‘dci:IR:abﬂBo://BBoﬁyd&’, (5.1)

where = points out of the page. In particular, we are careful to note that the integration with
respect to @ is the same @ on both sides — it is the area element of the loop pointing in the &
direction, and we know that B o #. Then we can take the derivative with respect to @ and match
magnitudes:

—%l: — BB,. (5.2)
This can then be solved with the initial condition B(0) = By:
B(t) = Bo(1 — Bt)z. (5.3)
(c)
Use Ampere’s law:
7{ B-dl = piolene. (5.4)

Choose an Amperian loop that is rectangular, oriented such that the current density passes through
its enclosed surface, of height 2z, and of width £. We can see that only 2 legs of the loop (pointing
along +2) will contribute to the integral. The enclosed current is then just js¢. Then Ampere’s
law gives

fg . df: 2630(1 — ﬁt) = /L()jsg, (55)
SO .
B(t) = Bo(1 - pt)z = ”(;jsz. (5.6)

We can see that there is no relationship between js and B(t), and hence, the height h is irrelevant
in the problem.

(d)

We use our work from part (c):

Js(t) = =—(@1-p1) (5.7)

6 Problem 6
(a)

At an infinitesimal section » — r + dr, the amount of charge is given by dQ = A(r)dr =
Ao (1 — %) dr. The velocity of the segment is v = wpr, and we hence find that for a ring at
radius r and circumference £ = 27r:

.
dI ¢ = dQv = Aowor (1 - Z) dr. (6.1)
We hence find \
. owo B Z
ar = = (1 L) dr. (6.2)
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(b)
The infinitesimal magnetic dipole moment of the rod is

A
dji = dI(r)A(r) = 37:0 (1 - %) mrt drs, (6.3)

where z points in along the direction of the angular velocity vector & as determined by the RHR.

Then . . X .
_ Aowo ( ™ 9, . Aowo (L° L%\ .  Aowol”
=", )" ET T8 T )T T (64)

(c)

The dipole moment is given by
fi = IA = ITR?(cos 03 + sin 07), (6.5)
where x points in the direction of the magnetic field and y is the perpendicular direction.

The torque of the dipole is
+=jix B=—IBrR?sinf . (6.6)

Setting this equal to the mechanical torque:

I,60 = —IB7R*sin6, (6.7)
where I,,, is the moment of inertia about the symmetry axis I, = mR?/2, so we get an equation
of motion oI B

6=—"""gng. (6.8)

(d)
Taking € small, the equation of motion becomes

2IBn

0= 9, (6.9)
which is precisely the equation of motion for a harmonic oscillator with frequency w = 4/ %.



