
Optional. Mark along the line to show your feelings Before exam: [____________________].
 on the spectrum between and . After exam: [____________________].

UC Berkeley – Computer Science

CS61B: Data Structures

Final, Fall 2020

This test has 9 questions across 18 pages worth a total of 1600 points and is to be completed in 170

minutes. The exam is closed book, except that you are allowed to use two double sided written cheat sheets

(front and back). No calculators or other electronic devices are permitted. Give your answers and show

your work in the space provided. Write the statement out below in the blank provided and sign your

name. You may do this before the exam begins.

“I have neither given nor received any assistance in the taking of this exam.”

 Signature: ___________________________

Points # Points

1 180 6 80

2 240 7 160

3 220 8 220

4 140 9 210

5 150 TOTAL 1600

Name: __________________________

SID: ___________________________

GitHub Account #: fa20-s_____

Tips:

• There may be partial credit for incomplete answers. Write as much of the solution as you can but

bear in mind that we may deduct points if your answers are much more complicated than necessary.

• There are a lot of problems on this exam. Work through the ones you are comfortable with

first. Do not get overly captivated by interesting design issues or complex corner cases you’re

not sure about.

• Not all information provided in a problem may be useful, and you may not need all lines.

• Unless otherwise stated, all given code on this exam should compile. All code has been compiled

and executed before printing, but in the unlikely event that we do happen to catch any bugs in the

exam, we’ll announce a fix. Unless we specifically give you the option, the correct answer is

not ‘does not compile.’

• ○ indicates that only one circle should be filled in.

• □ indicates that more than one box may be filled in.

• For answers which involve filling in a ○ or □, please fill in the shape completely.

 UC BERKELEY
GitHub Account #: fa20-s______

 2

2. Basic Sorts. Check the box corresponding to the first swap that happens when the given sorting

algorithm is run on the array below. If the algorithm does not perform swaps when sorting, check "no

swaps". Note that swapping 1-2 is the same thing as swapping 2-1. As an example, if we run selection sort

on the array {5, 4, 3, 2, 1}, the first swap would be 5-1 (or equivalently 1-5). By a swap, we mean the

exchange of two elements within the same array:

void swap(int[] x, int a, int b) {

 int temp = x[a];
 x[a] = x[b];

 x[b] = temp;

}

a) Selection sort (30 points).

○ 4-5 ○ 4-1 ○ 4-2 ○ 4-3 ○ 4-7 ○ 5-1 ○ 5-2 ○ 5-3 ○ 5-7 ○ 1-2

○ 1-3 ○ 1-7 ○ 2-3 ○ 2-7 ○ 3-7 ○ No swaps

b) Insertion sort (30 points).

○ 4-5 ○ 4-1 ○ 4-2 ○ 4-3 ○ 4-7 ○ 5-1 ○ 5-2 ○ 5-3 ○ 5-7 ○ 1-2

○ 1-3 ○ 1-7 ○ 2-3 ○ 2-7 ○ 3-7 ○ No swaps

c) Quick sort (30 points).

What is the first swap made by Quicksort-LTH as described in lecture, i.e., using left most item as pivot

and using Tony Hoare partitioning, all with no shuffling.

○ 4-5 ○ 4-1 ○ 4-2 ○ 4-3 ○ 4-7 ○ 5-1 ○ 5-2 ○ 5-3 ○ 5-7 ○ 1-2

○ 1-3 ○ 1-7 ○ 2-3 ○ 2-7 ○ 3-7 ○ No swaps

d) Merge sort (30 points).

What is the first swap made by Merge Sort as described in lecture? If we are splitting an odd length

array, assume the left half is larger.

○ 4-5 ○ 4-1 ○ 4-2 ○ 4-3 ○ 4-7 ○ 5-1 ○ 5-2 ○ 5-3 ○ 5-7 ○ 1-2

○ 1-3 ○ 1-7 ○ 2-3 ○ 2-7 ○ 3-7 ○ No swaps

e) Heapsort (30 points).

What is the first swap made by in-place Heapsort as described in lecture?

○ 4-5 ○ 4-1 ○ 4-2 ○ 4-3 ○ 4-7 ○ 5-1 ○ 5-2 ○ 5-3 ○ 5-7 ○ 1-2

○ 1-3 ○ 1-7 ○ 2-3 ○ 2-7 ○ 3-7 ○ No swaps

f) Counting sort (30 points).

What is the first swap made by Counting Sort as described in lecture?

○ 4-5 ○ 4-1 ○ 4-2 ○ 4-3 ○ 4-7 ○ 5-1 ○ 5-2 ○ 5-3 ○ 5-7 ○ 1-2

○ 1-3 ○ 1-7 ○ 2-3 ○ 2-7 ○ 3-7 ○ No swaps

CS61B MIDTERM 2, FALL 2020
GitHub Account #: fa20-s______

 3

3. New Traversals.

a) Preorder (30 points). Give the DFS-preorder for the graph below starting at node 4. Suppose

we break ties by going to the smaller node first. Give your answer as a comma separated list, e.g. "1,

2, 3".

DFS-preorder from node 4: __

b) Postorder (40 points). Now give the DFS-postorder for the graph starting from node 2, again

breaking ties by going to the smaller node first. Note that we are now starting from node 2!

DFS-postorder from node 2: _______________________________________

In class, we discussed pre, in, and post order traversals for binary trees. In this problem, consider a new

traversal called the pre/in order traversal. This new traversal is given by the pseudocode below,

assuming that the action taken upon visitation is to print the vertex's item. Note that in this new traversal,

each vertex is visited (e.g., printed) exactly twice.

pre_in(Node n):

 if n is null, return

 print(n.item)

 pre_in(n.left)

 print(n.item)

 pre_in(n.right)

 UC BERKELEY
GitHub Account #: fa20-s______

 4

c) A New Order (50 points). Give the pre/in order traversal of the tree below, which is the graph above

recopied as a binary tree rooted 1. Note that this is not supposed to be a binary search tree, it is just a

binary tree. Assume we start at 1. Give your answer as a comma separated list.

Pre/in traversal: _______________________________________

d) Tree Inference (60 points). Now suppose we have the pre/in traversal below starting from the root:

9, 3, 3, 6, 5, 1, 1, 5, 6, 9

Answer the following questions about the binary tree. Recall that the height of a tree is the number of

links between the root and the deepest leaf, e.g. the height of the tree from part c is 3. For the last

problem, give the level order traversal of the tree as a comma separated list. Note that there is only one

tree with the pre/in traversal given above. If an answer does not apply, write "None".

Number of nodes: _______________________________________

Height of the tree: _______________________________________

The left child of 6: ______________________________________

The parent of 1: _______________________________________

Level order traversal of the tree: _______________________________________

e) Harder Tree Inference (60 points). Now suppose we have the pre/in traversal below starting from

the root: 2, 2, 2, 2, 2, 2, 3, 3

How many distinct binary trees have this same pre/in traversal? We say that two trees are distinct if they

are different in any way. Note that the order of the 2s does not matter.

Number of trees: _______________________________________

CS61B MIDTERM 2, FALL 2020
GitHub Account #: fa20-s______

 5

4. Java Syntax and Data Structure Usage

a) Prime Factor Iterator (Java Syntax) (80 points). The PrimeFactorIterator class allows you to

iterate over the prime factors of a number in increasing order. This problem assumes nothing about your

familiarity with prime numbers. Here are some helpful definitions:

• A factor is a number that divides a number exactly, e.g., 15 is a factor of 45.

• A prime is a number whose only factors are 1 and itself.

The code below would print out 3, then 3, then 5, because these are the 3 prime factors of 45. Another

way of thinking about this is that 45/3 is 15, and 15/3 is 5, and 5/5 is 1.

int x = 45;

/* The loop below iterates 3 times. The first iteration prints 3, then the second

iteration prints 3, then the third iteration prints 5. */

for (int f : new PrimeFactorIterator(x)) {

 System.out.println(f);

}

Your implementation of the PrimeFactorIterator should provide the functionality above. Fill in

the PrimeFactorIterator class below. Note that your code must fit in the skeleton provided, i.e.,

you cannot add any lines. The reference sheet may be helpful. You may assume x is a positive integer.

public class PrimeFactorIterator implements ________________, ________________ {

 private int x;

 public PrimeFactorIterator(int givenX) {

 __;

 }

 public boolean hasNext() {

 __;

 }

 public int next() {

 int i = 2;

 while (____________________________) {

 __;

 }

 x = ____________________________________;

 return i;

 }

 public Iterator<Integer> iterator() {

 return ___;

 }

}

http://fa20.datastructur.es/materials/exam/reference_sheet_for_final_fa20.pdf

 UC BERKELEY
GitHub Account #: fa20-s______

 6

b) Unique Factor Count (Data Structure Selection) (60 points). The uniquePrimeFactorCount of a

number is the number of unique prime factors for that number. Examples:

• 98 has a uniquePrimeFactorCount of 2, since its prime factors are 2 x 7 x 7. The two unique

factors are 2 and 7.

• 223650 has a uniquePrimeFactorCount of 5, because its prime factors are 2 x 3 x 3 x 5 x 5 x 7

x 71. The five unique factors are 2, 3, 5, 7, and 71.

• 7 has a uniquePrimeFactorCount of 1, since it has just 1 unique prime factor, i.e. itself.

Fill in the uniquePrimeFactorCount function below.

You may use PrimeFactorIterator. Even if you did not complete part a correctly, you may assume that

the implementation of PrimeFactorIterator works correctly. Your implementation must fit in the

skeleton provided. You may not add additional lines. You may assume that any useful Java data

structures you'd like to use have been imported. The reference sheet may be helpful.

private int uniquePrimeFactorCount(int x) {

 __;

 for (__) {

 __;

 }

 return __;

}

http://fa20.datastructur.es/materials/exam/reference_sheet_for_final_fa20.pdf

CS61B MIDTERM 2, FALL 2020
GitHub Account #: fa20-s______

 7

c) Most Unique Factors (Data Structure Usage) (80 points). You are given the Comparator below

which compares two numbers based on their uniquePrimeFactorCount:

public class UniqueFactorCountComparator implements Comparator<Integer> {

 public int compare(Integer a, Integer b) {

 return uniquePrimeFactorCount (a) - uniquePrimeFactorCount (b);

 }

}

Implement mostUniquePrimeFactors below to print the k numbers between 1 and n, inclusive, that

have the highest uniquePrimeFactorCount. Assume k < n. If multiple numbers have the

same uniquePrimeFactorCount, you may print any of them. Your code must use O(k) memory and

must run in O(n log(k)) time. You may use previous parts. You can add a maximum of 12 lines of

code. The reference sheet may be helpful. For simplicity, assume the runtime of

uniquePrimeFactorCount is constant.

public void mostUniquePrimeFactors(int n, int k) {

 Comparator<Integer> c = ___;

 MinPQ<Integer> pq = new MinPQ<>(____________________________________);

}

Side node to number theory enjoying students (This paragraph is not part of the exam! You do not need

to read it): Of course, you can trivially find the number with the most unique prime factors in the given

range by just multiplying 2 x 3 x 5 x ... until you get to n. However, you can make this number theory

experiment a little more interesting by looking at only a subset of the numbers between 1 and n. For

example, when writing this problem, I originally looked at only palindromic numbers between 1 and n.

P.S. the first palindromic number with 7 prime factors is 20522502.

http://fa20.datastructur.es/materials/exam/reference_sheet_for_final_fa20.pdf

 UC BERKELEY
GitHub Account #: fa20-s______

 8

5. Sorting Variations. For this problem, we will be sorting Strings and will consider different

algorithms to do so. Assume that all strings are unique.

Mergesort can be written in pseudocode:

- If we have zero or one items, return.

- Split the items into two halves.

- Mergesort the left half.

- Mergesort the right half.

- Use merge to combine the two halves.

Quicksort can be written as:

- If we have zero or one items, return.

- Select the leftmost item as pivot.

- Partition the array around the pivot. The pivot is now in place.

- Quicksort everything to the left of the pivot.

- Quicksort everything to the right of the pivot.

Selection Sort can be written as:

- If we have zero or one items, return.

- Find the smallest item.

- Swap the smallest item into the leftmost position.

- Selection Sort the remaining items.

Note that above, any time we need to Sort the remaining items, we used the sort itself, e.g. with

Quicksort, we Quicksort everything to the left of the pivot, and Quicksort everything to the right of the

pivot.

a) P1sort (40 points). However, other choices are possible, for example, consider the algorithm below,

which I call P1sort. Consider P1Sort below:

- If we have zero or one items, return.

- Select the leftmost item as pivot.

- Partition the array around the pivot. The pivot is now in place.

- Selection Sort everything to the left of the pivot.

- Quicksort everything to the right of the pivot.

Note that P1Sort does not call itself recursively.

1. What is the best-case runtime for P1sort? Assume that all strings are unique and have constant

length.

○ Θ(1) ○ Θ(log(N)) ○ Θ(N) ○ Θ(N log(N)) ○ Θ(N2) ○ Θ(N2 log(N))

○ Θ(N3) ○Θ(N4) ○Worse than Θ(N4) ○Never terminates (infinite loop)

2. What is the worst-case runtime for P1sort? Assume that all strings are unique and have constant

length.

○ Θ(1) ○ Θ(log(N)) ○ Θ(N) ○ Θ(N log(N)) ○ Θ(N2) ○ Θ(N2 log(N))

○ Θ(N3) ○Θ(N4) ○Worse than Θ(N4) ○Never terminates (infinite loop)

CS61B MIDTERM 2, FALL 2020
GitHub Account #: fa20-s______

 9

b) P2sort (40 points). Consider P2sort below:

- If we have zero or one items, return.

- Split the items into two halves.

- Heapsort the left half.

- Pick a random sorting algorithm from {Selection, Merge, Quick, LSD sort, P2sort}

and use it to sort the right half.

- Use merge to combine the two halves.

1. What is the best-case runtime for P2sort? Assume that all strings are unique and have constant

length.

○ Θ(1) ○ Θ(log(N)) ○ Θ(N) ○ Θ(N log(N)) ○ Θ(N2) ○ Θ(N2 log(N))

○ Θ(N3) ○Θ(N4) ○Worse than Θ(N4) ○Never terminates (infinite loop)

2. What is the worst-case runtime for P2sort? Assume that all strings are unique and have constant

length.

○ Θ(1) ○ Θ(log(N)) ○ Θ(N) ○ Θ(N log(N)) ○ Θ(N2) ○ Θ(N2 log(N))

○ Θ(N3) ○Θ(N4) ○Worse than Θ(N4) ○Never terminates (infinite loop)

c) P3sort (60 points). Consider P3sort below:

- If we have zero or one items, return.

- Split the items into two halves.

- Pick a random sorting algorithm from {Selection, Merge, Quick, LSD sort, P3sort}

and use it to sort the left half.

- Pick a random sorting algorithm from {Selection, Merge, Quick, LSD sort, P3sort}

and use it to sort the right half.

- Use merge to combine the two halves.

1. What is the best-case runtime for P3sort? Assume that all strings are unique and have constant

length.

○ Θ(1) ○ Θ(log(N)) ○ Θ(N) ○ Θ(N log(N)) ○ Θ(N2) ○ Θ(N2 log(N))

○ Θ(N3) ○Θ(N4) ○Worse than Θ(N4) ○Never terminates (infinite loop)

2. What is the worst-case runtime for P3sort? Assume that all strings are unique and have constant

length.

○ Θ(1) ○ Θ(log(N)) ○ Θ(N) ○ Θ(N log(N)) ○ Θ(N2) ○ Θ(N2 log(N))

○ Θ(N3) ○Θ(N4) ○Worse than Θ(N4) ○Never terminates (infinite loop)

3. What is the runtime for P3sort in the case where it happens to pick P3sort for every random

choice? Assume that all strings are unique and have constant length.

○ Θ(1) ○ Θ(log(N)) ○ Θ(N) ○ Θ(N log(N)) ○ Θ(N2) ○ Θ(N2 log(N))

○ Θ(N3) ○Θ(N4) ○Worse than Θ(N4) ○Never terminates (infinite loop)

 UC BERKELEY
GitHub Account #: fa20-s______

 10

6. Minimum Spanning Trees. Suppose we have the graph below and run Prim's starting from P. Break

ties alphabetically.

a) Prim's Nodes (40 points). What is the order that the nodes are visited? Format your answer as a

comma separated list including start vertex P, e.g., "P, A, B, C".

Order: ___

b) Prim's Edges (30 points). What edges are included in the MST?

□ AV □ IR □ AI □ AN □ JV □ DN □ DP □ AD □ AP

c) Multiple MSTs (80 points). For the next part, we will be exploring the idea of having multiple MSTs

in a graph. Recall a graph can have multiple MSTs if there are multiple spanning trees of minimum

weight.

Looking at the graph below, which has been recopied from above, you might've realized that there is

only one MST. For each edge, provide a new edge weight which would result in the graph having

multiple MSTs if you changed only that edge.

If there is no possible value, put "None". If there are multiple possible values, pick any valid value. Note

that each answer box is independent of all of the other answer boxes, i.e., if you put a value under AD,

that doesn't have any effect on your answer for AP.

AD: _______________________________

AP: _______________________________

DN: _______________________________

AI: _______________________________

AV: _______________________________

IR: _______________________________

AN: _______________________________

DP: _______________________________

JV: _______________________________

CS61B MIDTERM 2, FALL 2020
GitHub Account #: fa20-s______

 11

7. Hashing Bears (80 points).

For this problem, assume the HashMap works as described in class and is implemented with an array of

length 4. You may assume the HashMap never resizes. Suppose the Bear class is defined as follows.

public class Bear {

 public String name;

 public boolean equals(Object o) {

 Bear bear = (Bear) o;

 return name.equals(bear.name);

 }

 public int hashCode() {

 return name.length();

 }

 ...

}

Suppose we run the following code.

HashMap<Bear, Integer> map = new HashMap<>();

Bear a = new Bear("sohum");

Bear b = new Bear("arjun");

map.put(a, 1);

map.put(b, 2);

a.name += a.name;

map.put(a, 3);

map.put(b, 4);

b.name += b.name;

map.put(b, 5);

Answer the following. Assume the code above has been run. Assume that get returns null if the key is

not in the hash table, and that the buckets are zero indexed. Lists of values should be given as a comma

separated list of integers, e.g., "3, 5". If a list of values is empty, write "None".

map.size(): __

map.get(new Bear(“sohum”)): __

map.get(new Bear(“sohumsohum”)): __

Length of list in bucket 1: __

Values in bucket 1 as comma separated list: __

Length of list in bucket 2: __

Values in bucket 2 as comma separated list: __

 UC BERKELEY
GitHub Account #: fa20-s______

 12

8. BST Rotations.

a) Rotation (30 points). Consider the following BST.

Suppose we call rotateLeft(p5), where p5 is the node containing the 5. Give the following quantities

after the rotation is complete. If a node has no parent, write -1.

Root: _______________ 3’s parent: _____________ 5’s parent: _____________

9’s parent: _____________ 11’s parent: _____________ 12’s parent: _____________

b) Rotation Sequence (50 points). Considering the same BST, we want the new root of this BST to be

the BSTNode containing the integer 10. This can be done with 3 rotation operations on the BST. Fill in

the following with the type of rotation and the item in the BSTNode that is being rotated.

1. ○ rotateRight

○ rotateLeft
Value to rotate: ____________________

2. ○ rotateRight

○ rotateLeft
Value to rotate: ____________________

3. ○ rotateRight

○ rotateLeft
Value to rotate: ____________________

c) Rotation Code (80 points). Suppose we have an implementation of a BST class as follows.

public class BST {

 private BSTNode root;

 private class BSTNode {

 private int value;

 private BSTNode left;

 private BSTNode right;

 }

 /* Rotates node to the left */

 private void rotateLeft(BSTNode node) {// implementation not shown}

 /* Rotates node to the right */

 private void rotateRight(BSTNode node) {// implementation not shown}

 ...

}

CS61B MIDTERM 2, FALL 2020
GitHub Account #: fa20-s______

 13

Suppose we want to add the method rotateUp(int value) that rotates the BSTNode containing the

given value to become the new root of the tree. In part b, you performed rotateUp(10). For simplicity,

you may assume the given value is in the tree.

Fill in the implementation for rotateUp below. You may only fill in the code provided. You may not

add additional lines.

public class BST {

 …

 public void rotateUp(int value) {

 __;

 }

 public void rotateUpHelper(int value, BSTNode curr) {

 if (__) {

 __;

}

 if (__) {

 __;

 __;

} else {

 __;

 __;

}

}

}

d) PNH (0 points). The patriarch of the Tenenbaum family falsely claimed on his gravestone to have

died tragically rescuing the family from what?

Answer: __

 UC BERKELEY
GitHub Account #: fa20-s______

 14

9. Shortest Paths (220 points).

Consider the graph below. We recommend you draw the graph on paper before starting. For all

algorithms, suppose we break ties alphabetically.

a) BFS (30 points). Suppose we run BFS from vertex G on the graph above.

Give the first four vertices visited by BFS, including the start vertex G. Format your answer as a

comma separated list, e.g. "G, X, Y, Z".

Order: ___

b) Dijsktras (140 points). Suppose we run Dijsktra's from vertex A on the graph above. Note that we

do not ask for distTo(A) because it's trivially zero since A is the start.

1. (25 points). Give the distance values computed by Dijkstra's algorithm for each vertex, if we run

Dijkstra's starting at vertex A.

distTo(B): _______________ distTo(C): _____________ distTo(D): _____________

distTo(E): _____________ distTo(F): _____________ distTo(G): _____________

2. (25 points). What is the order that the vertices are visited by Dijkstra's algorithm starting
from vertex A? Format your answer as a comma separated list, including vertex A.

Order: ___

3. (25 points). What edges are included in the shortest paths tree (SPT) for vertex A?

□ AC □ AB □ BC □ BD □ BF □ CD □ DG □ EF □ FG

4. (65 points). Subtract an integer k from one edge such that Dijkstra's fails to find the shortest

path from A to G. For instance, if we wanted to change BE to 1, k would be 3. What is

the minimum k, and what single edge should be changed? If there are multiple correct answers

check all that apply (e.g. if subtracting k from AC by itself or subtracting k from AB by itself

would result in the wrong shortest path from A to G, check the boxes for both AC and AB).

CS61B MIDTERM 2, FALL 2020
GitHub Account #: fa20-s______

 15

To reemphasize: We're only concerned with the correctness of the shortest path from A to G.

□ AC □ AB □ BC □ BD □ BF □ CD □ DG □ EF □ FG

k: ____________________________________

c) A* (65 points). Suppose we run A* from A to G on the original graph with the heuristic function

below. Note that we are trying to find the shortest path from A to G, but the heuristic of a vertex v is the

weight of the shortest path from v to E.

h(v) = total weight of the shortest path from v to E

For example, h(E) = 0, h(F) = 1, h(G) = 2, h(B) = 4, etc.

1. What will be the priority of C when it is added to the fringe?

Priority of C: ____________________________________

2. In what order will the vertices be visited? Give your answer as a comma separated list:

A* visit order: ___

3. Will A* compute the correct shortest total distance from A to G using this heuristic?

○ Yes ○ Depends on how ties are broken by the priority queue ○ No

 UC BERKELEY
GitHub Account #: fa20-s______

 16

10. Optimal Peak.

Warning: This problem is particularly challenging. The description is very verbose and somewhat

repetitive to make sure you don't miss any details, so it'll take some time to read. For this problem, we

are given a graph of Peaks (vertices) and Trails (edges), where all the Trails have positive weights.

Sohum wants to plan a hiking trip which he starts from a startPeak, hikes out to a goalPeak, and

hikes back to the startPeak! Let's define a valid trip by the following criteria:

1. Sohum wants his trip to be balanced — the length of the path to the goalPeak must be the exact

same as the length of the return trip.

2. Sohum wants his trip to be efficient — the path to the goalPeak and from the goalPeak back

must both be shortest paths, i.e. there cannot be a shorter path to the goalPeak, or from

the goalPeak back.

3. Sohum wants to leave a different way than he came to the goalPeak — the Trail Sohum uses

to enter the goalPeak must differ from the Trail Sohum uses to leave the goalPeak.

Now, let's define the longest valid trip as the valid trip of maximum total distance, and let's define

the goalPeak of the longest valid trip as the optimalPeak.

For instance, in the graph above, if S is the startPeak, there are two valid trips:

S → G → F → E → G → S and S → G → B → C → E → G → S. These two trips have goal peaks F

and C, respectively. These are the only valid goal peaks starting from S.

To verify that F is a valid goal peak / S → G → F → E → G → S is a valid trip:

1. Balanced: The length of S → G → F is equal to the length of F → E → G → S

2. Efficient: S → G → F is the shortest path from S to F and F → E → G → S is the shortest path

from F to S

3. Different Way: In this trip, Sohum takes G → F to get to F and F → E to leave F

CS61B MIDTERM 2, FALL 2020
GitHub Account #: fa20-s______

 17

To verify that C is a valid goal peak / S → G → B → C → E → G → S is a valid trip:

1. Balanced: The length of S → G → B → C is equal to the length of C → E → G → S

2. Efficient: S → G → B → C is the shortest path from S to C and S → G → E → C is the shortest

path from C to S

3. Different Way: In this trip, Sohum takes B → C to get to C and C → E to leave C

All other peaks are invalid. For example, D is not a valid goalPeak despite there existence of a trip that

is balanced and different way, i.e. (S → A → D) & (D → B → S). This is because (S → A → D) is

not efficient, i.e., a shorter path from S to D exists (S → G → B → D).

Among these two choices of valid goal peaks, C is the optimalPeak because the trip to C and back is

longer than the trip to F and back, i.e., they have total weight 20 and 16 respectively.

a) Specific Inputs (100 points). For each startPeak below, find the corresponding optimalPeak

and select the trails traversed on the trip. In the event that a trip traverses the same trail multiple

times, check it once. For instance, in the example above with S as the startPeak, the optimalPeak

is C, and we would select SG, GB, BC, EC, and GE. If there is no valid trip with the given startPeak,

put the None for both options.

1. (50 points). C is the startPeak. Trails Traversed:

□ AB □ AD □ AS □ BC □ BD □ BG □ BS □ CE □ EF

□ EG □ FG □ GS □ None

Optimal Peak (note, no credit will be awarded unless your answer to trails traversed is correct or

almost correct):

○ A ○ B ○ C ○ D ○ E ○ F ○ G ○ S ○ None

2. (50 points). A is the startPeak. Trails Traversed:

□ AB □ AD □ AS □ BC □ BD □ BG □ BS □ CE □ EF

□ EG □ FG □ GS □ None

Optimal Peak (note, no credit will be awarded unless your answer to trails traversed is correct or

almost correct):

○ A ○ B ○ C ○ D ○ E ○ F ○ G ○ S ○ None

 UC BERKELEY
GitHub Account #: fa20-s______

 18

b) General Algorithm (110 points). Give an algorithm to find the optimalPeak given a startPeak and

a graph. Your algorithm should run in O(E log(V)), where E is the number of edges (trails) and V is the

number of vertices (Peaks). You will receive no partial credit if your solution does not meet the

runtime bound. Assume E > V. Note you do not need to find the path to and from the optimalPeak,

only the optimalPeak. Please be detailed, precise, and concise in your explanation.

As an example of how you might write an algorithm in a mix of pseudocode and reasoning, here's our

attempt at writing Dijkstra's:

To dissuade random guessing, we will provide 10% credit (11 points) for those that select the option

below.

○ I will accept 10% credit and acknowledge my response will not be considered.

○ I will attempt the problem and acknowledge I will be graded as such.

Give your algorithm here. Note it should NOT be in code. Instead, we recommend using a mix of

pseudocode and reasoning.

Given a source vertex s:

 Set distTo(v) = infinity for all vertices except for the source which has

distTo(s) = 0

 Set edgeTo(v) = null for all vertices

 Until all vertices have been visited:

 Let A be the vertex with smallest distTo that has not yet been visited

 visit(A)

define visit(A):

 For each edge e from A to B with weight w:

 if distTo(A) + w < distTo(B):

 distTo(B) = distTo(A) + w

 edgeTo(B) = A

