
DATA 100 Final-ExamFall 2020 Final-Exam

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

# You must choose either this option

# Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org
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Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your Berkeley email?

(c) What is your student ID number?

(d) When are you taking this exam?

# Tuesday 7pm PST

# Wednesday 8am PST

# Other

(e) Honor Code: All work on this exam is my own.

By writing your full name below, you are agreeing to this code:

(f) Important: You must copy the following statement exactly into the box below. Failure to do so may result
in points deducted on the exam.

“I certify that all work on this exam is my own. I acknowledge that collaboration of any kind is forbidden,
and that I will face severe penalties if I am caught, including at minimum, harsh penalties to my grade
and a letter sent to the Center for Student Conduct.”



Exam generated for <EMAILADDRESS> 3

1. (a) (9.0 points)

Consider sampling students from the audience of a comedy show at UC Berkeley. The theater, which
is currently at full capacity, is divided into three sections: Front, Middle, and Back. The following
table contains the capacity of each section:

Section Capacity

Front 20
Middle 35
Back 25

In the first two subparts of this question, we sample 5 students uniformly at randomwith replacement.

i.A. (1.0 pt) In our sample of 5 students, what is the expected number of students sitting in the
middle?

# 9
4

# 5
4

# 35
16

# 7
16

# 25
16

# None of the above

B. (2.0 pt) In our sample of 5 students, what is the probability that everyone is not in the same
section? Select all that apply.
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ii. Consider the population of UC Berkeley students. We are interested in finding the expectation and
variance of the number of students that have a driver’s license in a sample from this population. We
are given the following information:

• 70% of students are in-state and 30% of students are out-of-state
• 60% of in-state students have driver’s licenses and 30% of out-of-state students have driver’s
licenses

We sample 120 students uniformly at random with replacement.

A. (2.0 pt) Define the random variable Xi to be 1 if the ith student in our sample has a driver’s
license, and 0 otherwise.

What is P (Xi = 1)? Please answer as a decimal rounded to two decimal places.

B. (1.0 pt) How many students do we expect to hold a driver’s license in our sample? Your answer
should be an algebraic expression involving prevletter, where prevletter is the correct answer to
the previous part.

C. (1.0 pt) What is the variance of the number of students that hold a driver’s license in our sample?
Again, your answer should be an algebraic expression involving prevletter, as defined above.

D. (2.0 pt) In the previous two parts, we assumed that we were sampling with replacement. How
would your answers to the above two parts change if we were instead sampling without replacement?

# Expectation and variance would both stay the same

# Expectation and variance would both be different

# Expectation would stay the same while variance would be different

# Expectation would be different while the variance would stay the same



Exam generated for <EMAILADDRESS> 5

(9.0 points)

Consider sampling students from the audience of a comedy show at UC Berkeley. The theater, which
is currently at full capacity, is divided into three sections: Front, Middle, and Back. The following
table contains the capacity of each section:

Section Capacity

Front 35
Middle 20
Back 25

In the first two subparts of this question, we sample 5 students uniformly at randomwith replacement.

(b) i.A. (1.0 pt) In our sample of 5 students, what is the expected number of students sitting in the
middle?

# 9
4

# 5
4

# 35
16

# 7
16

# 25
16

# None of the above

B. (2.0 pt) In our sample of 5 students, what is the probability that everyone is not in the same
section? Select all that apply.
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ii. Consider the population of UC Berkeley students. We are interested in finding the expectation and
variance of the number of students that have a driver’s license in a sample from this population. We
are given the following information:

• 30% of students are in-state and 70% of students are out-of-state
• 20% of in-state students have driver’s licenses and 80% of out-of-state students have driver’s
licenses

We sample 150 students uniformly at random with replacement.

A. (2.0 pt) Define the random variable Xi to be 1 if the ith student in our sample has a driver’s
license, and 0 otherwise.

What is P (Xi = 1)? Please answer as a decimal rounded to two decimal places.

B. (1.0 pt) How many students do we expect to hold a driver’s license in our sample? Your answer
should be an algebraic expression involving prevletter, where prevletter is the correct answer to
the previous part.

C. (1.0 pt) What is the variance of the number of students that hold a driver’s license in our sample?
Again, your answer should be an algebraic expression involving prevletter, as defined above.

D. (2.0 pt) In the previous two parts, we assumed that we were sampling with replacement. How
would your answers to the above two parts change if we were instead sampling without replacement?

# Expectation and variance would both stay the same

# Expectation and variance would both be different

# Expectation would stay the same while variance would be different

# Expectation would be different while the variance would stay the same
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2. (6.0 points)

Throughout this question, we are dealing with pandas DataFrame and Series objects. All code for this question,
where applicable, must be written in Python. You may assume that pandas has been imported as pd.

The following DataFrame cars contains the names of car models from 1970 to 1982. The name column is the
primary key of the table.

The first five rows are shown below.

name mpg horsepower weight acceleration year origin brand

toyota corolla 1200 32.0 65 1836 21.0 1974 Japan toyota
buick skylark 320 15.0 165 3693 11.5 1970 USA buick

fiat 128 29.0 49 1867 19.5 1973 Europe fiat
ford mustang gl 27.0 86 2790 15.6 1982 USA ford

ford torino 17.0 140 3449 10.5 1970 USA ford

(a) (2.0 pt) Below, write a line of Pandas code that creates a Series of the names of cars created by brand
“carbrand” with greater than mpgnum mpg. The resulting Series should be assigned to the variable
varname.

(b) (4.0 pt) Below, write a line of Pandas code to create a DataFrame containing data only for those car
models whose brands have at least mpgnum2 mpg for each of their models. The resulting DataFrame
must have the same structure and format as cars. The resulting DataFrame should be assigned to the
variable varname2.
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3. (8.0 points)

In this question, we’re interested in finding the number of classes taken by students at Zoom University. We
will be working with two DataFrames, students and enrollment. Throughout this question, you may assume
that pandas has been imported as pd.

Each row in the students DataFrame represents a student. The students DataFrame contains the following
columns:

• student_name: the student’s name
• SID: the student’s ID
• major: the student’s major

Here are the first four rows in students:

student_name SID major

0 Alice Red 123 Computer Science
1 Bob Lime 128 Biology
2 Susie Orange 209 Anthropology
3 Frank Blue 212 History

Each row in the enrollment DataFrame represents an enrollment record for a specific student in a single class.
If a student is enrolled in multiple classes, each class taken by the student is a separate row in enrollment.
The enrollment DataFrame contains the following columns:

• SID: the student’s ID
• class_name: the name of the class the student is enrolled in
• class_id: the ID of the class

Here are the first five rows in enrollment:

SID class_name class_id

0 123 Intro to Data Science 200
1 128 Organic Chemistry 145
2 128 Intro to Data Science 100
3 209 US History 185
4 212 US History 185

Note: It is possible for rows with different class_id to share the same class_name in the enrollment
DataFrame. For example, there is an “Intro to Data Science” with class_id 100 and another “Intro to Data
Science” with class_id 200.



Exam generated for <EMAILADDRESS> 9

(a) (4.0 pt) Suppose you are asked to add a column num_class to the students DataFrame that indicates
the number of classes each student is enrolled in. If a student does not have any enrollment records, they
should have a value of 0 in num_class. You are allowed to change the index of students, but the number
of rows should stay the same after adding the column, and the name and major columns should be kept
the same.

Which of the following accomplishes this task? There is only one correct answer.

A:

num_class = students.merge(enrollment, left_on='student_name', right_on='class_name', how='right') \
.groupby('SID').count()

num_class = num_class.drop(columns=['class_name', 'student_name', 'major'])
num_class = num_class.rename(columns={'class_id': 'num_class'})
students = students.merge(num_class, left_on='SID', right_index=True)

B:

num_class = enrollment.groupby('SID').count()
num_class = num_class.set_index('SID')
num_class = num_class.rename(columns={'class_id': 'num_class'})
students['num_class'] = num_class['class_id']

C:

num_class = students.merge(enrollment, on='SID', how='outer').groupby('SID').count()
num_class = num_class.drop(columns=['class_name', 'student_name', 'major'])
num_class = num_class.rename(columns={'class_id': 'num_class'})
students = students.merge(num_class, left_on='SID', right_index=True)

# A

# B

# C

# None of the above
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(b) (4.0 pt) Now you are asked to find all unique majors across all students enrolled in Intro to Data
Science. Specifically, you need to create a Series ds_majors that has majors as the index and the counts
of students enrolled in Intro to Data Science in each major as the values.

Which of the following accomplishes this task? There is only one correct answer.

A:

ds = enrollment[enrollment['class_name'] == 'Intro to Data Science']
ds_majors = ds.merge(students, on='SID', how='outer').groupby('major')['SID'].count()

B:

ds = enrollment[enrollment['class_name'] == 'Intro to Data Science']
ds_majors = ds.merge(students, on='SID', how='left').groupby('major')['SID'].count()

C:

major_count = students.groupby('major').count()
merged = enrollment.merge(major_count, on='SID')
ds = merged[merged['class_name'] == 'Intro to Data Science']
ds_majors = ds['major']

# A

# B

# C

# None of the above
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4. (6.0 points)

A biology class grows and weighs yams as part of a class project. Some yams were grown in hot water and some
were grown in cold water. A student, Shirley, decides to create a histogram of the yam weights.

(a) (2.0 pt) Professor Kane decides that yams weighing between 8 and 9 kilograms are his favorite. What
percentage of yams weigh between 8 and 9 kilograms?

# 20%

# 25%

# 30%

# 35%

# Impossible to tell

(b) (2.0 pt) Another student, Jeff, suspects that the the yams grown in hot water didn’t grow as well as the
yams grown in cold water and as such ended up weighing less. If 20 yams were grown in total and weighed,
how many yams weigh less than 7 kilograms?

# 3

# 4

# 5

# 6

# Impossible to tell
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(c) (2.0 pt) A third student, Todd, wants to compare the maximum bin (9.5 to 10 kilograms) with the median
bin (7.5 to 8.5 kilograms). Which bin contains more yams?

# Median bin (7.5 to 8.5 kg bin)

# Maximum bin (9.5 to 10 kg bin)

# They contain the same number of yams

# Impossible to tell
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5. (15.0 points)

(a) Suppose we have the following dataset from the neighborhood CVS store on Shattuck. The table shows
total rain (mm) for each quarter and total number of umbrellas sold for each quarter. Note: For the first
three parts of this question, our dataset only has these four rows.

Quarter Total rain (mm) Total number of umbrellas sold

Jan-Mar 300 200
Apr-Jun 50 40
Jul-Sep 10 10
Oct-Dec 200 100

i. (2.0 pt) We first decide to model umbrella sales using the constant model ŷ = θ. We will use squared
loss as our loss function (no regularization).

Which expression below correctly gives the average loss of our fitted model on the given dataset?
Select the closest answer.

# R(θ̂) = 1
4

∑4
i=1(yi − 87.5xi)

2

# R(θ̂) = 1
4

∑4
i=1(yi − 140)2

# R(θ̂) = 1
4

∑4
i=1(yi − 87.5)2

# R(θ̂) = 1
4

∑4
i=1(yi − 140xi)

2

ii. (3.0 pt) Now we decide to fit a simple linear model with an intercept term ŷ = θ0 + θ1x that predicts
total number of umbrellas sold (y) given total rain (x). We will use squared loss as our loss function,
and we will not use regularization.

We are given r = 0.979, σx = 116.40, and σy = 72.59, which are the correlation coefficient, standard
deviation of x, and standard deviation of y, respectively.

Which expression below correctly gives the average loss of our fitted model on the given dataset?
Select the closest answer.

# R(θ̂) = 1
4

∑4
i=1(yi − (10 + 0.61xi))

2

# R(θ̂) = 1
4

∑4
i=1(yi − (0.61 + 2xi))

2

# R(θ̂) = 1
4

∑4
i=1(yi − (2.57 + 1.57xi))

2

# R(θ̂) = 1
4

∑4
i=1(yi − (2 + 0.61xi))

2

iii. (3.0 pt) For whatever reason, we decide to reverse our model. That is, we decide to predict total
rain (x) given total number of umbrellas sold (y) using a simple linear model with an intercept term
x̂ = θ0 + θ1y. Again, we will use squared loss as our loss function, and we will not use regularization.

Which expression below correctly gives the average loss of our fitted model on the given dataset?
Select the closest answer.

# R(θ̂) = 1
4

∑4
i=1(xi − (10 + 1.57yi))

2

# R(θ̂) = 1
4

∑4
i=1(xi − (0.61 + 2yi))

2

# R(θ̂) = 1
4

∑4
i=1(xi − (2.57 + 1.57yi))

2

# R(θ̂) = 1
4

∑4
i=1(xi − (2 + 0.61yi))

2
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(b) Now, we are back to predicting total number of umbrellas sold (y). For the remainder of the question,
assume that we have many more rows of data, not just the four given originally.

In the first part of this question, we didn’t use the Quarter column. Let’s suppose we want to one-hot
encode Quarter for use in our model, but with a twist - we only want to encode whether or not the current
Quarter is Jul-Sep, since that’s when rainfall is at a low.

The resulting design matrix, along with an intercept column, is provided below. (Note, the “Total number
of umbrellas sold” column is no longer visible since it’s not part of our design matrix.)

Intercept Quarter=Jul-Sep Quarter!=Jul-Sep Total rain (mm)

1 0 1 300
1 0 1 50
1 1 0 10
...

...
...

...
1 0 1 200

We fit two different linear models using ordinary least squares, both of which use a subset of the columns
of the above design matrix:

• We fit a linear model on all columns except Quarter!=Jul-Sep. After doing so, we end up with the
following fitted model, where our optimal model parameter is θ̂ = [letter1, letter2, letter3]T :

ŷ = letter1 + letter2 · (Quarter=Jul-Sep) + letter3 · (Total rain)

• We fit a linear model on all columns except Quarter=Jul-Sep. After doing so, we end up with the
following fitted model, where our optimal model parameter is β̂ = [D,E, F ]T :

ŷ = D + E · (Quarter!=Jul-Sep) + F · (Total rain)

In this problem, you will express D, E, and F in terms of letter1, letter2, and letter3. Your answers
should all be algebraic expressions, for instance “100 * letter1 * letter2 * letter3” (that is not the correct
answer to any of these parts). If you don’t believe it’s possible to determine the answer, just
write “not possible”.

i. (2.0 pt) What is D in terms of letter1, letter2, and letter3?

ii. (2.0 pt) What is E in terms of letter1, letter2, and letter3?

iii. (2.0 pt) What is F in terms of letter1, letter2, and letter3?
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iv. (1.0 pt) Suppose we now regularize the previous two models using L2 regularization with some fixed
value of λ > 0.

We denote the optimal regularized model parameters by θ̂ridge and β̂ridge, corresponding to the first
and second models in the previous part, respectively. All three of our features, including our intercept
term, are regularized.

True or False: The relationships involving D, E, F , letter1, letter2, and letter3 from the previous
part still hold true, even though our model is now regularized.

# True

# False



Exam generated for <EMAILADDRESS> 16

6. (7.0 points)

(a) In class, we derived the following bias-variance decomposition under a specific set of conditions.

model risk = σ2 + (model bias)2 +model variance

We assume that there is an unknown underlying function g(x) that generates the points we observe.
Specifically, we observe Yi = g(xi) + εi, where εi is a zero-mean noise term with variance σ2 that is
independent for each observation. Our model’s goal is to approximate g(x) as best as possible.

i. (1.0 pt) Does this decomposition hold true for linear models and squared loss?

# Yes

# No

ii. (1.0 pt) Does this decomposition hold true for non-linear models and squared loss?

# Yes

# No

iii. (1.0 pt) Does this decomposition hold true for linear models and absolute loss?

# Yes

# No

iv. (1.0 pt) Does this decomposition hold true for classification decision trees and zero-one loss?

(Zero-one loss is equal to 1 if a prediction is correct, and 0 if it is incorrect.)

# Yes

# No
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(b) Recall that we discussed the technique of pruning a decision tree, which involves removing certain branches.
What effect does pruning a decision tree have on its

i. (1.0 pt) Bias?

# Increases it

# Decreases it

ii. (1.0 pt) Variance?

# Increases it

# Decreases it

iii. (1.0 pt) Complexity?

# Increases it

# Decreases it

# Depends on the splitting rule
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7. (4.0 points)

For each of the following prompts, answer true if the given modification to k-fold cross-validation will result in
overfitting, and false if it will not. Assume that we have a large dataset that we have split into a training set
and test set.

(a) (1.0 pt) The test set is divided into k folds. For each fold of the test set, we use the entire training set to
train the model, and use the given fold/subset of the test set for validation. The average error among all k
folds is the cross-validation error.

True or False: This modification will result in overfitting.

# True

# False

(b) (1.0 pt) We use normal k-fold cross-validation, but for each fold we only use half of the validation set for
validation.

True or False: This modification will result in overfitting.

# True

# False

(c) (1.0 pt) We use normal k-fold cross-validation, but for each fold we use the entire training set for training.

True or False: This modification will result in overfitting.

# True

# False

(d) (1.0 pt) We use normal k-fold cross-validation, but after the train-test split, we standardize the training
set before running cross-validation so that each column has mean 0 and variance 1.

True or False: This modification will result in overfitting.

# True

# False
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8. (14.0 points)

Consider the following model:

fθ(x) = θ0 + 2θ1x+ θ1θ2x
2

We have a training dataset with two observations (xi, yi): {(1, 1), (2, 3)}.

In order to determine optimal model parameters θ̂0, θ̂1, and θ̂2, we choose squared loss with L2 regularization.
Assume that the regularization hyperparameter λ = 1

2 for the entirety of this question, and assume that we
regularize the intercept term θ0. Our objective function is the sum of our loss function averaged across our
entire dataset and a regularization penalty.

We decide to use gradient descent to help us solve for the optimal parameters.

(a) (3.0 pt) Which of the following is equal to the objective function for our model, loss, regularization, and
training data?

#
R(θ) =

[
(θ0 + 2θ1 + θ1θ2 − 1)2 + (θ0 + 2θ1+1 + 4θ1θ2 − 3)2

]
+

1

2
(θ20 + θ21 + θ22)

#
R(θ) =

1

2

[
(1− (θ0 + 2θ1 + θ1θ2))

2 + (3− (θ0 + 2θ1+1 + 4θ1θ2))
2 + |θ0|2 + |θ1|+ |θ2|

]
#

R(θ) =
1

2

[
(1− (θ0 + 2θ1 + θ1θ2))

2 + (3− (θ0 + 2θ1+1 + 4θ1θ2))
2
]
+ 2(θ21 + θ22)

#
R(θ) =

1

2

[
(θ0 + 2θ1 + θ1θ2 − 1)2 + (θ0 + 2θ1+1 + 4θ1θ2 − 3)2 + θ20 + θ21 + θ22

]

Suppose we start our gradient descent procedure at the initial guess θ(0) =

ab
c

, where a, b, c are some

constants.

Then, ∂R
∂θ0

∣∣∣∣∣
θ=θ(0)

, the partial derivative of our objective function with respect to θ0 evaluated at our initial

guess θ(0), is of the form

Ga+H · 2b + 5bc− 4

where G and H are integers.
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(b) i. (3.0 pt) What is G?

# -3

# -2

# -1

# 0

# 1

# 2

# 3

ii. (3.0 pt) What is H?

# -3

# -2

# -1

# 0

# 1

# 2

# 3
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(c) (1.0 pt) Recall that our model is fθ(x) = θ0 + 2θ1x+ θ1θ2x
2, or equivalently fθ(xi) = θ0 + 2θ1xi + θ1θ2x

2
i .

Suppose we define γ =

γ0γ1
γ2

 such that

γ0 = θ0, γ1 = 2θ1 , γ2 = θ2

Can we use ridge regression to find γ̂?

# Yes

# No

(d) (1.0 pt) Suppose our model is instead

fθ(xi) = θ0 + 2θ1xi,1 + θ2xi,1 · xi,2

where xi,1 and xi,2 are scalars corresponding to feature 1 and feature 2 for observation i, respectively. Let
γ be as defined in the previous part.

Can we use ridge regression to find γ̂?

# Yes

# No
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(e) (3.0 pt) Note: This part is independent of the previous parts of this question.

Below is a buggy implementation of sgd, a function which is supposed to perform stochastic gradient
descent with batch size B on the training dataset X and y by applying the gradient gradient_function
with learning rate alpha.

def sgd(X, y, theta0, gradient_function, alpha, B, max_iter=100000):
"""
Performs stochastic gradient descent.

Args:
X: A 2D array, the dataset, with features stored in columns

and observations stored in rows
y: A 1D array, the outcome values
theta0: A 1D array, the initial weights
gradient_function: A function that takes in a vector

of weights, a dataset, and outcome values and
returns the value of the gradient

alpha: A float, the learning rate
B: An integer, the batch size
max_iter (optional): The maximum number of iterations

to attempt during SGD

Returns:
A 1D array of optimal weights

Notes:
gradient_function takes 3 arguments: a 1D array of weights,
a 2D array of data points, and a 1D array of outcomes. It
returns a 1D array of the same shape as the weights, the
value of the gradient evaluated with those parameters.

"""

theta = theta0
for _ in range(max_iter):

idx = np.random.choice(X.shape[1], size=B, replace=True)
Xb, yb = X[idx,:], y[idx]
grad = gradient_function(theta, Xb, yb)
theta = theta - alpha*grad

return theta

Which of the following edits need to be made to the implementation of sgd above so that it works correctly
(as specified in class)? Select all that apply.

2 X.shape[1] should be replaced with X.shape[0]

2 size=B should be replaced with size=X.shape[0]

2 replace=True should be replaced with replace=False

2 theta - alpha*grad should be replaced with theta + alpha*grad

2 gradient_function(theta, Xb, yb) should be replaced with gradient_function(theta, X, y)

2 X[idx,:], y[idx] should be replaced with X[:, idx], y

2 None of the above
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9. (13.0 points)

In this problem, we’ll be using logistic regression to build a classifier that differentiates between 2 varieties of
wine produced in the same region of Italy.

In this problem, assume the following:

• We are working with a design matrix X with two features: the hue of the wine (hue, x1) and its alcohol by
volume (abv, x2). Note that both hue and abv are quantitative (hue is a quantitative measure of a wine’s
color).

• X is standardized.
• All wines are either type 0 or 1 (y).

We are modeling the probability that a particular wine is of type 1 using

P (Y = 1|x) = σ(θ1 · hue+ θ2 · abv)

(a) (2.0 pt) Consider the following scatter plot of our two (standardized) features. Note, this scatter plot is
only relevant in this subpart of the question.

Which of the following statements are true about an unregularized logistic regression model fit on the
above data? Select all that apply.

2 After performing logistic regression, the weight for the hue feature will very likely have a negative sign.

2 After performing logistic regression, the weight for the abv feature will very likely have a negative sign.

2 After performing logistic regression, the abv feature will have very likely a higher magnitude weight
than the hue feature.

2 This data is linearly separable between the two wine types without any feature transformations.
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(b) (2.0 pt) Consider the following three rows from our training data, along with their predicted probabilities
ŷ for some choice of θ:

hue abv y ŷ

-0.17 0.24 0 0.45
-1.18 1.61 0 0.19
1.25 -0.97 1 0.80

What is the mean cross-entropy loss on just the above three rows of our training data?

# − 1
3

(
log(0.45) + log(0.19) + log(0.20)

)
# − 1

3

(
log(0.55) + log(0.19) + log(0.80)

)
# − 1

3

(
log(0.45) + log(0.81) + log(0.80)

)
# − 1

3

(
log(0.55) + log(0.81) + log(0.80)

)
# None of the above

(c) (3.0 pt) After thresholding ŷ, we compute a confusion matrix for our model’s predictions. As a reminder,
type 0 and type 1 refer to wine types.

Predicted Type 0 Predicted Type 1

Actual Type 0 57 ???
Actual Type 1 ??? 62

For some reason, our confusion matrix is corrupted, and doesn’t contain the information on the off-diagonals.
However, we somehow know that our model’s accuracy is 119

130 and our model’s precision is 31
32 .

What is our model’s recall? Give your answer as a reduced fraction with no spaces, i.e. in the form a/b (no
decimals or spaces).

(d) Suppose we choose θ̂ = [2, 1]T . Consider the wine “Billywine” with hue 1
4 and abv −2.
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i. (2.0 pt) Let β be the odds that Billywine is a type 1 wine under our model. What is β? There is
only one correct answer.

#
β =

3

2

#
β = −3

2

#
β = e

3
2

#
β = e−

3
2

#
β = σ(−3

2
)

#
β = log

( − 3
2

1 + 3
2

)

ii. (2.0 pt) Let γ be the probability that Billywine is a type 1 wine under our model. What is γ? Select
all that apply. (β is as defined in the previous subpart.)

2
γ = e−

3
2

2
γ = σ(−3

2
)

2
γ = σ(

3

2
)

2
γ =

β − 1

β

2
γ =

β

β + 1
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iii. (2.0 pt) Suppose that we choose a threshold T such that the decision boundary of our model is
2 · hue+ abv = 3

2 . What value of T results in this decision boundary? There is only one correct answer.
(β and γ are as defined in the previous two subparts.)

# T = β

# T = e−γ

# T = γ

# T = −β

# T = 1− β

# T = log( γ
1−γ )

# T = 1− γ
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10. (7.0 points)

(a) Suppose we are given the following scatter plot.

We have data that is plotted in the space of features x1 and x2. Suppose we want to perform PCA on
these two features.

i. (1.0 pt) Which of the following is most likely to be the equation of the line representing PC 1?

#
x2 =

11

3
x1 − 9

#
x2 = 3x1

#
x2 = −20

3
x1 + 5

#
x2 =

2

3
x1

#
x2 = −3x1
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ii. (1.0 pt) Which of the following is most likely to be the equation of the line representing PC 2?

#
x2 = −3x1

#
x2 =

1

3
x1 + 5

#
x2 = −4x1 + 10

#
x2 = 3x1

#
x2 = −3

2
x1
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(b) In this part of this question, we will look at emotion ratings of images for a psychology experiment. Each
row of the DataFrame F represents an image, and each column represents an emotion. There are 940
images and 7 emotions. An example row of F is provided below.

Say we perform the SVD on F using the following code:

X = (F - np.mean(F, axis = 0))
u, s, vt = np.linalg.svd(X, full_matrices=False)

i. (1.0 pt)

The above scree plot depicts the proportion of variance captured by each PC. Ignoring the plot’s title,
which of the following lines of code could have created the above plot?

# plt.plot(s**2/np.sum(s**2), u)

# plt.plot(F[:, :7]), s**2/np.sum(s))

# plt.plot(np.arange(1, F.shape[1]+1), s**2/np.sum(s**2))

# plt.plot(np.arange(1, F.shape[1]+1), s**2/np.sum(s))

# plt.plot(u@s, s**2/np.sum(s**2))



Exam generated for <EMAILADDRESS> 30

ii. (2.0 pt) Suppose we know that np.sum(s**2) evaluates to 121. Which of the following is closest to
s[1]?

# 0.3

# 3.3

# 6

# 8

# 36

iii. (1.0 pt) Which of the following statements evaluates to True?

# (u @ np.diag(s)).shape == (940, 7)

# (u @ np.diag(s)).shape == (7, 7)

# (u @ np.diag(s)).shape == (940, 940)

# (u @ np.diag(s)).shape == (7, 940)

# None of the above

iv. (1.0 pt) True or False: Ignoring numerical precision issues, the expression

np.var((X @ vt.T)[:, i]) == s[i]**2 / len(X)

evaluates to True for all integers i between 0 and X.shape[1] - 1.

# True

# False

# Impossible to tell
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11. (8.0 points)

(a) Consider the following three datasets, each consisting of two features (x1 and x2) and a class label (red
crosses and blue stars).

The green triangle in Dataset 3 represents a point with an overlapping red cross and blue
star point at the same position. Assume that otherwise, there are no overlapping points of different
classes in any of the above datasets.

i. (2.0 pt) On which of the above datasets could logistic regression (fit with no regularization) achieve
100% training accuracy? Select all that apply.

2 Dataset 1

2 Dataset 2

2 Dataset 3

2 None of the above

ii. (2.0 pt) On which of the above datasets could a decision tree achieve 100% training accuracy? Select
all that apply.

2 Dataset 1

2 Dataset 2

2 Dataset 3

2 None of the above

iii. (2.0 pt) On which of the above datasets could a random forest achieve 100% training accuracy? Select
all that apply.

2 Dataset 1

2 Dataset 2

2 Dataset 3

2 None of the above
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(b) (2.0 pt) Suppose we have a training dataset with n = 26 observations, consisting of some design matrix X
and binary response variable y, and we want to train a binary classifier.

The all-zero classifier is a classifer that predicts 0 for all observations, regardless of input. The training
accuracy of the all-zero classifier on our training data is 1

8 .

If we were to build a decision tree for classification, what would be the entropy of the tree at the root node,
where all observations begin?

# − 1
8

[
7 log2

1
8 + log2

7
8

]
# − 1

8

[
log2

1
8 + log2

7
8

]
# − 1

64

[
8 log2

1
8 + 56 log2

7
8

]
# − 1

8

[
log2

1
8 + 7 log2

7
8

]
# −8

[
log2

1
8 + 7 log2

7
8

]
# Impossible to tell
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12. (7.0 points)

Consider a DataFrame people containing the height, weight, and BMI (body mass index) of several individuals.
Our dataset has three columns:

• height (cm): Height in centimeters
• weight (kg): Weight in kilograms
• bmi: Body Mass Index, calculated as

people['bmi'] = people['weight (kg)'] / (people['height (cm)'] / 100) ** 2

The first five rows of people might look something like:

height (cm) weight (kg) bmi

185.42 109.545 31.8626
172.72 73.6364 24.6835
187.96 96.3636 27.2761
180.34 100 30.7479
175.26 93.6364 30.4845

(a) (2.0 pt) Let r(x, y) be a function that computes the correlation coefficient r for two Series of numbers x
and y.

Suppose, just for this part, that the values in height (cm) and weight (kg) are generated using an
uncorrelated random number generator (that is, r(people['height (cm)'], people['weight (kg)'])
== 0).

What is the most likely value of R = r(people['height (cm)'], people['bmi'])?

# R < -0.2

# -0.2 <= R < 0.2

# R >= 0.2

(b) (2.0 pt) For whatever reason, we decide to add Imperial units to our dataset, which we will now call
humans. That is, we add the columns height (in) and weight (lb), where humans['height (in)'] =
humans['height (cm)'] / 2.54 and humans['weight (lb)'] = humans['weight (kg)'] * 2.2.

The first five rows of humans might look something like:

height (in) height (cm) weight (lb) weight (kg) bmi

73 185.42 241 109.545 31.8626
68 172.72 162 73.6364 24.6835
74 187.96 212 96.3636 27.2761
71 180.34 220 100 30.7479
69 175.26 206 93.6364 30.4845

Which of the following sets of columns are linearly independent and have a span that is equal to the span
of the columns of humans? Select all that apply.

2 height (in), height (cm), weight (lb), weight (kg), bmi

2 height (in), weight (lb), bmi

2 height (cm), weight (lb), bmi

2 height (in), height (cm), weight (lb), bmi

2 height (cm), bmi
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2 None of the above

(c) (2.0 pt) Now suppose we fit two linear models on the humans data.

Model A:

ˆbmi = θ0 + θin · height (in)+ θcm · height (cm)+ θlb · weight (lb)+ θkg · weight (kg)

Model B:

ˆbmi = β0 + βcm · height (cm)+ βkg · weight (kg)

Suppose we create 95% confidence intervals for each of the above non-intercept parameters using the
bootstrap method. Which of the following parameters’ confidence interval will likely contain the value 0?
Select all that apply.

2 θin

2 θcm

2 θlb

2 θkg

2 βcm

2 βkg

2 None of the above

(d) (1.0 pt) Suppose we add random noise to all columns in humans except for bmi. Assume that our random
noise is drawn from the Normal distribution with mean 0 and variance 2, and that the noise for each
element in the DataFrame is independent. We call this new DataFrame noisy_humans.

Suppose we fit Model A and Model B on noisy_humans and create bootstrapped confidence intervals for
each of the above six parameters. True or False: our answer to the previous part remains the same.

# True

# False
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13. (3.0 points)

Below, we’ve clustered three different datasets each into three classes (orange circles, blue crosses, and green
stars). Assume that there are no overlapping points anywhere.

(a) (2.0 pt) In which of the above dataset/clustering combinations is it true that

inertia = n · distortion

where n is a positive integer? Select all that apply.

2 Clustering A

2 Clustering B

2 Clustering C

2 None of the above
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(b) (1.0 pt) In which of the above dataset/clustering combinations is there a point with a negative silhouette
score? Select all that apply.

2 Clustering A

2 Clustering B

2 Clustering C

2 None of the above
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14. (3.0 points)

(a) (1.0 pt) Fill in the blanks: In the star schema for data storage, the fact table contains ____ that refer
to ____ in ____.

# primary keys, secondary keys, dimension tables

# integers, primary keys, dimension tables

# primary keys, dimension tables, foreign keys

# primary keys, foreign keys, dimension tables

# foreign keys, primary keys, dimension tables

(b) (1.0 pt) Fill in the blanks: ____ is/are designed to manipulate small amounts of data. ____ is/are
designed to manipulate large amounts of data. ____ do/does both.

# numpy and pandas, Hadoop and Spark, Modin

# Hadoop and Spark, Modin, numpy and pandas

# Hadoop and Spark, numpy and pandas, Modin

# Modin, numpy and pandas, Hadoop and Spark

(c) (1.0 pt) True or False: Hadoop, Spark, and Modin were all created at Berkeley.

# True

# False
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No more questions.


