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EECS 16A Designing Information Devices and Systems I
Fall 2020 Midterm 2

Midterm 2 Solution

1. HONOR CODE
If you have not already done so, please copy the following statements into the box provided for the honor
code on your answer sheet, and sign your name.

I will respect my classmates and the integrity of this exam by following this honor code. I affirm:

• I have read the instructions for this exam. I understand them and will follow them.

• All of the work submitted here is my original work.

• I did not reference any sources other than my allocated reference cheat sheet(s).

• I did not collaborate with any other human being on this exam.

2. (a) (2 Points) What are you looking forward to after this midterm? All answers will be awarded full
credit.

(b) (2 Points) Tell us about something that makes you happy. All answers will be awarded full credit.
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3. Circuit Analysis (14 points)

(a) (3 points) Which components violate passive sign convention in Fig. 3.1? In your answer sheet, write
down all that apply. For full credit, you must write only components that violate passive sign
convention. If you list any other components, you will receive no points.
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+−

R3

+−

R1

+ −
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+ V1 Is

−

+
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+
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Figure 3.1: Schematic for part (a).

(1) R1

(2) R2

(3) R3

(4) R4

(5) R5

(6) Is

(7) Vs1

(8) Vs2

Solution: The only elements that have violated the current flowing into positive and coming out the
negative voltage labellings are R3, R4, Vs1, Is.

(b) (3 points) Write a KVL expression for the loop drawn in Fig. 3.2. Your answer should be in terms
of u1,u2,u3, u4, or u5 and Vs1 and Vs2, please do not add labels to the figure. Show your work.

R5

R4R3
i3

R1i1

−
+Vs2−

+Vs1 Is

R2u1 u2 u3

u4

u5

Figure 3.2: Schematic for part (b).
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Solution: If we look at the voltage drops around the loop clockwise, we can write the KVL expression
as:

(0−u1)+(u1−u2)+(u2−u4)+(u4−0) = 0

We can recognize that (0−u1) =−Vs1 and u2−u4 =Vs2 to rewrite the expression in another way:

−Vs1 +(u1−u2)+Vs2 +(u4−0) = 0

We can also recognize that (u1− u2) = R1i1 and (u4− 0) = −R3i3 to rewrite the expression in yet
another way:

(0−u1)+R1i1 +(u2−u4)−R3i3 = 0

or using voltage sources:
−Vs1 +R1i1 +Vs2−R3i3 = 0

Any equivalent variant of the four expressions above are acceptable.

(c) (3 points) Write the expression for KCL at node P in terms of currents Is, i4, and i5 as labelled in Fig.
3.3. Then, re-write the expression in terms of Is, node voltages, and resistances only. The rewritten
expression should not contain i4, and i5. Note that P is a label for a node, and is not a node voltage
value. Show your work.

R5
i5

R4
i4R3

R1

−
+Vs2−

+Vs1 Is

R2u1 u2 u3

u4

u5

P

Figure 3.3: Schematic for part (c).

Solution: The first expression is KCL at the node P in terms of currents Is, i4, and i5. These currents
are all leaving the node P, and 0 current enters the node:

0 = Is + i4 + i5

To re-write the expression in terms of Is, node voltages, and resistances only, we recognize using
Ohm’s law that i4 = u5−u4

R4
and i5 = u5

R5
. Using this, we re-write the KCL expression as:

0 = Is +
u5−u4

R4
+

u5

R5

EECS 16A, Fall 2020, Midterm 2 3



4

(d) (2 point) Given the node voltage u4 = 3V in Fig. 3.4, find the node voltage u2. Justify your answer.
Hint: You should not have to do many calculations for this part.

1Ω

1Ω3Ω

2Ω

−
+3V−

+10V 1A

1Ωu1 u2 u3

u4

u5

Figure 3.4: Schematic for parts (d) and (e).

Solution: u2 = u4 + 3V = 6V.

(e) (3 point) How would you connect an ammeter to this circuit to measure current flowing through the
3Ω resistor in Fig. 3.4? Recall that an ammeter is a device that measures current, and its symbol is
shown in Fig. 3.5. In your answer sheet, redraw the full schematic from Fig. 3.4 with the ammeter
connected correctly.

A

Figure 3.5: Ammeter symbol.

Solution: The ammeter must be placed in series with the element the current is passing through. As
such, it must be placed in series with the 3Ω resistor. It can be placed on either side of the resistor.

1Ω

1Ω3Ω

A

2Ω

−
+3V−

+10V 1A

1Ωu1 u2 u3

u4

u5

Figure 3.6: Ammeter placement to measure current flowing through the 3Ω resistor.
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4. Take a Load Off (9 points)

Your 16A TA Amanda is an undergraduate researcher in Berkeley’s power electronics lab, where she is
working on building power converters to drive motors on electric aircraft.

As a part of her project, Amanda is building a piece of test equipment known as a resistive load bank. You
are helping her do the calculations!

(a) (2 points) Consider the model in Figure (4.1) for the resistive load bank.
The load resistor RL = 100Ω and VS = 100V. When the switch is closed, what is value of the power
dissipated by RL? Show your work. The switch is ideal for this part, i.e. it acts a wire when it is
closed.

−
+VS

S1

RL

Figure 4.1: Model of resistive load bank in a circuit.

Solution:

P =
V 2

S
RL

P =
1002

100
P = 100W

(b) (3 points) Consider again the circuit from Figure (4.1) with the switch closed. Assume that the load
resistor RL = 100Ω can dissipate a max of Pmax = 2.5kW = 2.5 · 103 W without exceeding thermal
limitations. What is that maximum value of VS you can use without exceeding the thermal limits?
Show your work. You may assume the switch is ideal, i.e., it acts a wire when it is closed.
Solution: Consider when the switch is closed; the power dissipated by the resistor is

Pmax =
V 2

S,max

RL

Solving for VS,max:
VS,max =

√
PmaxRL

VS,max =
√
(2.5 ·103)(100)

VS,max = 500V
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(c) (4 points) For this part, we will no longer assume the switch is ideal; instead, the closed switch has
a nonzero on-resistance Ron, as shown in Figure (4.2). You found the Ron dissipating 2.5W at load
current IL = 5A, as shown in Figure (4.2). What is the value of Ron? Show your work.

−
+VS

Ron

IL

RL

Figure 4.2: Resistive load bank in a circuit with a non-ideal switch.

Solution: Consider when the switch is closed; the power dissipated by the resistor is

Psw = I2
LRon

Solving for Ron:

Ron =
Psw

I2
L

Ron =
2.5
52

Ron = 0.1Ω
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5. Stay Tuned (15 points)

PG&E just announced another power outage and you desperately need a radio transmitter to battle the
impending telecommunication doom! You need to build an antenna tuner, which is a variable resistor to
control the power of the transmitter signal.

This tuner consists of two identical resistive bars (M1 and M2) of length L, and a cross-sectional area of A,
as shown in Figure 5.1. The strips are made of a material with resistivity ρ . The resistive bars are connected
with ideal electrical wires in the following configuration:

M1

M2

U

V

L

w
A = w×h

h

Figure 5.1: Resistive metal bars connected through ideal wires.

(a) (4 points) Let RUV be the equivalent resistance between nodes U and V in Figure 5.1. Write an
expression for RUV in terms of L, A, ρ and other numerical values. Show your work.
Solution: M1 and M2 have the following resistances:

RM1 =
ρL
A

;

RM2 =
ρL
A

.

These two resistors are connected in series. So the equivalent resistance is given by

RUV = RM1 +RM2 =
ρL
A

+
ρL
A

=
2ρL

A
.

(b) (6 points) The resistive bar M1 is flexible, so if we press any point on it a contact is made between M1
and M2. As shown in Figure 5.2, a sliding contact is used to make a contact at position x0.
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M1

Sliding contact

M2

U

V

0 x0 L x

Figure 5.2: Sliding switch making a contact between M1 and M2.

(i) Draw a circuit diagram that represents the scenario in Figure 5.2. The sliding contact has
no resistance and acts like a wire when the contact is made. Hint: Your diagram should have
four resistors.

(ii) Express the equivalent resistance between nodes U and V , i.e., RUV in terms of L, x0, A, ρ

and other numerical values, when the sliding contact is present.
(iii) Assume x0 = 8cm, L = 10cm, A = 10−3cm2, and ρ = 5×10−3Ωcm. Find the value of RUV when

the sliding contact is present. Show your work.

Solution:
(i) The sliding contact can be modeled as a wire with no resistance. The segments of M1 on both

sides of the contact can be modeled as two resistors: R1 and R2. Similarly the segments of M2
on both sides of the contact can be modeled as two resistors R3 and R4. So the circuit diagram
representing the metal strips with sliding contact is the following:

U

R2R1

R3 R4
V

(ii) The resistances in the diagram are given by:

R1 =
ρx0

A
, R2 =

ρ(L− x0)

A
, R3 =

ρx0

A
, and R4 =

ρ(L− x0)

A

R1 and R3 are shorted by the sliding contact, so they are not not going to contribute to the equiv-
alent resistance. This means that if we apply a voltage across terminals U and V , no current will
go through R1 and R3, as the sliding contact offers a path with zero resistance. The equivalent
resistance RUV is given by the series combination of R2 and R4 only:

RUV = R2 +R4 =
ρ(L− x0)

A
+

ρ(L− x0)

A
=

2ρ(L− x0)

A
.

(iii) The value of RUV can be found by plugging in p = 8cm in the above equation:

RUV =
2ρ(L−8)

A
=

2×5×10−3Ωcm(10cm−8cm)

10−3cm2 = 20Ω.
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(c) (5 points) Now let us model the transmitter as a voltage source VS, in series with a resistor RS, while
our antenna tuner is represented by RUV . The circuit model is shown in Figure 5.3:

−
+VS

RS

RUV

IUV

Transmitter circuit Antenna tuner

Figure 5.3: Circuit model for the radio transmitter.

In order to prevent damage to the tuner, we need to make sure that the current through RUV never
exceeds 0.1A. Assuming 20Ω≤ RUV ≤ 80Ω and RS = 50Ω, find the maximum allowable value of
VS, so that IUV ≤ 0.1A for the full range of RUV . Show your work.
Solution: Resistances RS and RUV are in series, so their equivalent is given by Req = RS +RUV . So
using Ohm’s law we can calculate IUV :

IUV =
VS

Req

=⇒ IUV =
VS

RUV +RS

Now the current IUV will be maximum when Req is minimum, i.e. when RUV is minimum. So the
minimum IUV,max = 0.1A will occur when RUV = RUV,min = 20Ω. So we have:

IUV,max =
VS,max

RUV,min +RS

=⇒ 0.1A =
VS,max

20Ω+50Ω

=⇒ VS,max = 7V
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6. Resistive Touchscreens (15 points)
We have an H-shaped grid of resistors as shown in Fig. 6.1 that we would like to use as a touchscreen. Points
P00, P10, P01, P11, P02, and P12 are depicted by the black dots. Throughout this question, measuring a voltage
at a certain point means connecting the + terminal of a voltmeter to the black dot corresponding to
that point and the - terminal of the voltmeter to the ground node. Note that all resistors are 1kΩ.

−
+5V

P00

1kΩ

P01

1kΩ

P02

P10

1kΩ

P11

1kΩ

P12

1kΩ

0 1 x

0

1

2

y

Figure 6.1: A schematic of the H-shaped resistive touchscreen.

(a) (3 points) What are the voltages measured at each of the 6 points P00, P10, P01, P11, P02, and P12 in
Fig. 6.1? Show your work.
Solution: P00 and P10 are connected to ground, so P00 = P10 = 0V . P02 and P12 are connected to
the supply node, so P02 = P12 = 5V . Since all the resistor values are equal, we have symmetry in the
circuit, and the voltages at the intermediate points P01 and P11 are the same. Therefore, there is no
current flowing through the horizontal resistor, i.e. there is no voltage drop across that resistor. So we
can remove it from our calculations. Doing so, we are simply left with voltage division: P01 = P11 =
5V R

R+R = 2.5V .

(b) (3 points) Can we determine the horizontal position (x-coordinate) of touch using this touchscreen in
Fig. 6.1? Can we determine the vertical position (y-coordinate) of touch using this touchscreen? For
each direction, if you can, explain why. If you cannot, explain why not. Note that the x and y axes
are drawn on the figure for your convenience.
Solution: We cannot determine the horizontal position since the voltage does not change if we move
between points horizontally. Specifically, P00 = P10, P01 = P11, and P02 = P12, so the voltage does not
change if we only change the x-coordinate.
We can determine determine the vertical position since the voltage changes if we move between points
vertically. Specifically, P00 6=P01 6=P02 and P10 6=P11 6=P12, so we detect a voltage change if we change
the y-coordinate.

Question continues on next page.
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(c) (6 points) Your friend at Stanford proposes using a different resistive touchscreen shown in Fig. 6.2.
Note that there is a mix of 1kΩ and 2kΩ resistors, and they accidentally connected a wire between
P11 and P10.

(i) Your friend claims to measure a voltage of 0V. Can you identify where the touch happened? If a
point exists, write it. If multiple points exist, list them. If no points exist, say so. Explain your
answer. Note that the measurement circuit is not shown in the figure.

(ii) Then your friend claims to measure a voltage of 2.5V. Can you identify where the touch happened?
If a point exists, write it. If multiple points exist, list them. If no points exist, say so. Explain
your answer. Note that the measurement circuit is not shown in the figure.

−
+5V

P00

2kΩ

P01

1kΩ

P02

P10

2kΩ

P11

1kΩ

P12

2kΩ

0 1 x

0

1

2

y

Figure 6.2: A touchscreen proposed by your Stanford friend for part (c).

Solution:
(i) We can identify at which points the touch occurs, however we cannot identify the point uniquely

since multiple points have a voltage of 0V. These points are P00, P10, and P11, since they are all
connected to ground (i.e. P00 = P10 = P11 = 0V ).

(ii) We’d like to re-draw a simplified circuit. Note that the 2kΩ resistor between P11 and P10 are
connected to ground on both sides, so we can remove that resistor. We can also note that P11 is a
ground node. We can re-draw the the circuit to solve for the voltage at P01:

−
+5V

2kΩ

P01

1kΩ

2kΩ

1kΩ

Note that we have two parallel resistors, each of 2kΩ, connecting P01 to ground. We can therefore
re-draw the circuit as:
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−
+5V

1kΩ

P01

1kΩ 1kΩ

We can therefore solve for the voltage at P01 as a voltage division of 5V: P01 = 5V 1kΩ

1kΩ+1kΩ
= 2.5V .

No other point on the circuit has this voltage. Therefore, yes, we can identify where the touch
happened, and we can do so uniquely as there is only one point that exists with this voltage: P01.

(d) (3 points) You are now given the resistor grid shown in Fig. 6.3. Your goal is to uniquely determine
the horizontal position (x-coordinate) of a touch. How would you connect your voltage source to do
this? In your answer sheet, redraw the full circuit with the voltage source terminals connected to
the correct nodes.

Q00

Q01
1kΩ Q11

1kΩ Q21

Q201kΩ
Q101kΩ

1kΩ

0 1 2 x

0

1

y

−
+5V

Figure 6.3: Resistor grid for part (d).

Solution:
Any connection that results in unique voltages along x-axis is valid. For this grid, this occurs when the
terminals of the voltage source are connected to points with different x-coordinates. For example, in
the solution below, voltages at x=2 (i.e. Q20 and Q21) are all 5V, x=1 (i.e. Q10 and Q11) are all 2.5V,
and x=0 (i.e. Q00 and Q01) are all 0V. Voltages in y-axis are ambiguous.

Q00

Q01
1kΩ Q11

1kΩQ21

Q201kΩ
Q101kΩ

1kΩ

0 1 2 x

0

1

y

−
+5V
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Another acceptable configuration is shown below. Voltages at x=2 (i.e. Q20 and Q21) are all 4V and at
x=0 (i.e. Q00 and Q01) are all 0V. Voltages at x=1,y=0 (i.e. Q10) is 3V and at x=1,y=1 (i.e. Q11) is 5V.
Note that each x-coordinate has at least one unique voltage, we we can determine the x-axis.

Q00

Q01
1kΩQ11

1kΩ Q21

Q201kΩ
Q101kΩ

1kΩ

0 1 2 x

0

1

y

−
+5V

Any equivalent schematic of the two configurations above is acceptable.
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7. Superposition (23 points)

For this question, we will analyze the circuit shown below with the two current sources of strength IA and IB

as inputs. It may be observed that the network of resistors shown in the circuit is symmetric. We will first
solve this circuit for symmetric inputs IA = IB, and then for anti-symmetric inputs IA = −IB. Using these
two results, we we will solve the circuit for arbitrary inputs IA, IB.

u1

IA 1Ω

2Ω 2Ω

u3

IB

4Ω

u2

(a) (6 points) Consider the following circuit in Fig. 7.1 with symmetric inputs, IA = IB = 1A. Using
superposition, solve for the node voltages at the nodes marked u1, u2 and u3. Show your work and
justify your answer.
(Hint: You should find that the node voltages u1 and u3 will be the same, that is, u1 = u3.)

u1

IA=1A 1Ω

2Ω 2Ω

u3

IB=1A

4Ω

u2

Figure 7.1: Schematic for part (a).
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Solution:
Current source IB zeroed out.

u1a

IA=1A 1Ω

2Ω 2Ω

u3a

4Ω

u2a

We show one solution approach using series/parallel equivalence and Ohm’s law. We can redraw this
circuit as follows:

u1a

IA=1A 1Ω

(2||6)Ω u2a

Using Ohm’s Law and noting that 2||6 = 1.5 we find

u2a = IA ·1Ω = 1V

u1a = u2a + IA ·1.5Ω = 2.5V

To find u3a, we note that the current flowing through the 4Ω and 2Ω resistors in the top branch clock-
wise is (using Ohm’s Law):

Itop =
(u1a−u2a)V

6Ω
=

1.5V
6Ω

= 0.25A.

And then applying Ohm’s Law again across the 4Ω resistor, we find:

u1a−u3a = Itop ·4Ω = 0.25A ·4Ω = 1V

⇒ u3a = u1a−1V = 2.5V−1V = 1.5V.

So we have found:

u1a = 2.5V

u2a = 1V

u3a = 1.5V.
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Current source IA zeroed out.

u1b

1Ω

2Ω 2Ω

u3b

IB=1A

4Ω

u2b

This circuit is very similar to when IB is zeroed out, just with the relative positions of the nodes with
respect to the active current source modified. So we can observe that:

u1b = u3a = 1.5V

u2b = u2a = 1V

u3b = u1a = 2.5V.

Both current sources IA and IB active. We simply find the sum to see what happens when both IA and
IB are active.

u1 = u1a +u1b = 2.5V+1.5V = 4V

u2 = u2a +u2b = 1V+1V = 2V

u3 = u3a +u3b = 1.5V+2.5V = 4V.

(b) (6 points) Consider the following circuit in Fig. 7.2 with anti-symmetric inputs, IA = 1A and IB =
−1A. Using superposition solve for the node voltages at the nodes marked u1, u2 and u3. Show
your work and justify your answer.
(Hint: You should find that u1 =−u3.)

u1

1A 1Ω

2Ω 2Ω

u3

1A

4Ω

u2

(IA = 1A) (IB =−1A)

Figure 7.2: Schematic for part (b).
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Solution: This solution mostly follows the same logic as in part (a). We simply need to account for
the different direction of the current source IB.
Current source IB zeroed out.

u1a

IA=1A 1Ω

2Ω 2Ω

u3a

4Ω

u2a

We analyzed this same circuit in part (a) and arrive at the same results:

u1a = 2.5V

u2a = 1V

u3a = 1.5V.

Current source IA zeroed out.

u1b

1Ω

2Ω 2Ω

u3b

IB=−1A

4Ω

u2b

As with part (a), due to symmetry, we can use the results from the case where only the current source
IA is active. However, since IB is “flipped” relative to part (a) – i.e. the value of IB is negative – we
simply need to scale our answers from part (a) by −1. Taking the symmetry and sign information into
account, we arrive at:

u1b =−u3a =−1.5V

u2b =−u2a =−1V

u3b =−u1a =−2.5V.
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Both current sources IA and IB active. We simply find the sum to see what happens when both IA and
IB are active.

u1 = u1a +u1b = 2.5V−1.5V = 1V

u2 = u2a +u2b = 1V−1V = 0V

u3 = u3a +u3b = 1.5V−2.5V =−1V.

(c) (3 points)
Now consider Fig. 7.3, where IA = 2A and IB = 2A; in other words, we double the current sources
from part (a). Here, as well as in the earlier circuits, the node voltages u1, u2 and u3 can be represented

by the vector~u =

u1
u2
u3

.

Assume that when IA = 1A and IB = 1A as part (a), the solution was given by~u =

u1
u2
u3

=

α

β

α

.

What are the new node voltages, ~u =

u1
u2
u3

, in Fig. 7.3, when IA = 2A and IB = 2A? Write your

answer in terms of α and β . You do not need to use any of the work from parts (a) and (b) to
solve this part. Justify your answer.
Hint: It might be helpful to think of the circuit as being represented by a system of equations given as:

A~u =~b,

where A ∈ R3×3,~u =

u1
u2
u3

 and~b =

IA

0
IB

. However, you do not need to find A to solve this problem.

u1

IA=2A 1Ω

2Ω 2Ω

u3

IB=2A

4Ω

u2

Figure 7.3: Schematic for part (c).
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Solution: We were given that when IA = IB = 1A,

~u =

u1
u2
u3

=

α

β

α

= A−1

1
0
1


Now when IA = IB = 2A (that is, if we double the currents), then we find the following:

~u = A−1

2
0
2

= 2A−1

1
0
1

= 2

α

β

α



(d) (8 points) Assume that when IA = 1A and IB = 1A (also known as “common mode”), the node voltages

were given by ~ucm =

u1
u2
u3

 =

α

β

α

. Also, assume that when IA = 1A and IB = −1A (also known as

“differential mode”), the node voltages were given by~udm =

u1
u2
u3

=

 γ

0
−γ

.

Consider the circuit shown below in Fig. 7.4, with current sources of strengths IA = 6A and IB = 2A.

Find the node voltages,~u =

u1
u2
u3

, in terms of α , β and γ . You do not need to use any of the work

from parts (a) and (b) to solve this part. Show your work and justify your answer. You do not have
to use to NVA to solve this part, there is an easier solution.

u1

IA=6A 1Ω

2Ω 2Ω

u3

IB=2A

4Ω

u2

Figure 7.4: Schematic for part (d).

Hint: Again, as before, it might be helpful to think of the circuit as being represented by a system of
equations given as:

A~u =~b,
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where A ∈ R3×3, ~u =

u1
u2
u3

 and~b =

IA

0
IB

. However, you do not need to find A to solve this problem.

Can you write ~b as a linear combination of two vectors that correspond to the circuits you have
already solved?
Solution: We are given the following facts:

~ucm = A−1

1
0
1

 =

α

β

α


~udm = A−1

 1
0
−1

 =

 γ

0
−γ


Using the provided hint, we can decompose the current sources IA = 6A and IB = 2A into common
and differential mode components as follows:6

0
2

=

4
0
4

+
 2

0
−2

 .
So that means that we can find the node potentials~u as follows:

~u = A−1(

4
0
4

+
 2

0
−2

) = 4A−1

1
0
1

+2A−1

 1
0
−1

= 4 ~ucm +2 ~udm

So we arrive at the final answer:

~u =

4α +2γ

4β

4α−2γ

 .
Note that this corresponds to solving the following two circuits, and superposing their solutions.

u1

IA=4A 1Ω

2Ω 2Ω

u3

IB=4A

4Ω

u2 u1

IA=2A 1Ω

2Ω 2Ω

u3

IB=−2A

4Ω

u2
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8. DRAM (Dynamic Random Access Memory) Cell (28 points)

You are on a research team investigating the design of Dynamic Random Access Memory (DRAM) cells to
improve their performance!

. . .

CDRAM

Access Switch

Figure 8.1: A DRAM cell consisting of an access switch and a capacitive storage element, CDRAM.

(a) (3 points) You are making a capacitor with a new insulating material between the DRAM capacitor
plates. The DRAM capacitor has the following properties:

• CDRAM plate area, A = 1µm×10µm = 10−11m2,
• Distance between CDRAM plates, d = 40nm = 4×10−8m,
• Permittivity of the material between the CDRAM plates, ε = 40ε0 F/m, where ε0 is the permittivity

of free space.

What is the capacitance of a DRAM capacitor, CDRAM, in terms of ε0 and other numerical values.
Show your work. You do not need to substitute the value of ε0.
Solution: Applying the capacitance formula, we obtain:

CDRAM =
εA
d

=
40ε0A

d
= (40) · ε0 ·

1µm×10µm
40nm

= 40 · ε0 ·
(1×10−6)(1×10−5)

4×10−8

= 10 · ε0 · (1×10−3)

= 0.01ε0

(b) (3 points) Now let’s consider the case in Figure 8.2, which is the setup after the switch in Figure 8.1 is
closed at time t = 0. When the switch is closed it starts conducting a current Iswitch, as shown in Figure
8.2.
Assume that CDRAM has no charge stored on it at t = 0 seconds, i.e. it has no initial charge. Let
Iswitch = 90pA = 9×10−11A, and CDRAM = 90fF = 9×10−14F.
Find the value of Vout at t = 1ms = 10−3s. Show your work.
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Iswitch

CDRAM

+

−

Vout

Figure 8.2: Ideal DRAM cell.

Solution:
Recall the basic capacitor-charge-voltage relationship Q =VC. Differentiating both sides with respect
to time, we obtain dQ

dt =C dV
dt .

Iswitch u1

CDRAM

i1
+

−

Vout

A single KCL equation at node u1 gives Iswitch = i1, where i1 = dQ
dt =CDRAM

dVout
dt .

We integrate and solve for Vout(t) at t = 1ms as follows:

Iswitch =CDRAM
dVout

dt

=⇒ dVout

dt
=

Iswitch

CDRAM∫ dVout

dt
=
∫ t

0

Iswitch

CDRAM
dτ

∴Vout(t) =
Iswitch

CDRAM
t +Vout(0) =

Iswitch

CDRAM
t

Vout(t = 1ms) =
Iswitch

CDRAM
×1ms

=
90pA
90fF

×1ms

= 1V

EECS 16A, Fall 2020, Midterm 2 22



23

(c) (5 points) Unfortunately, in reality, our access switch is not ideal and has a parasitic capacitance
Cswitch, which gets added to the circuit when the switch is closed. Cswitch affects the DRAM write
speed, i.e. how fast CDRAM can be charged.
Find rate of change of Vout , i.e. dVout

dt , as a function of CDRAM, Cswitch and Iswitch for both (i) the ideal
circuit circuit without Cswitch, as shown in the left side of Figure 8.3 and (ii) the non-ideal circuit
circuit with Cswitch, as shown in the right side of Figure 8.3. Show your work.
Then compare dVout

dt values for both circuits. A larger dVout
dt means faster write speed.

Which circuit has faster write speed? Justify your answer.

Iswitch

CDRAM

+

−

Vout

Iswitch

Cswitch CDRAM

+

−

Vout

Figure 8.3: Left: Circuit without parasitic capacitance. Right: Circuit with parasitic capacitance.

Solution: We rewrite the dVout
dt from the previous parts as follows.

Without the effect of Cswitch:

dVout

dt
=

Iswitch

CDRAM

With the effect of switch capacitance: The equivalent capacitance is given by Ceq =Cswitch+CDRAM,
since Cswitch and CDRAM are in parallel.

dVout

dt
=

Iswitch

Cswitch +CDRAM

Clearly, if a switch capacitance Cswitch is present, then dVout
dt will be smaller as the fraction in the

expression will have a larger denominator, hence the change in the output voltage will be slower. This
implies that the write speed will be reduced if Cswitch is present.

(d) (3 points) Assume you want to build an array of DRAM capacitors. You start by connecting two
DRAM capacitors in parallel and charging them with a voltage source with value VDD, as shown in
Figure 8.4. Each DRAM capacitor has a capacitance value of CDRAM.

−
+VDD CDRAM CDRAM

Figure 8.4: DRAM capacitors in parallel are charged.
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When the capacitors are charged, how much total energy is going to be stored in both DRAM
capacitors together? Show your work. Your answer should be a function of CDRAM and VDD.
Solution:
Here, we apply the equation E = 1

2CV 2 to find the energy stored on a capacitor. So the energy stored
on both capacitors is given by:
Method I: Energy stored on the capacitors are: E1 =CDRAM · (VDD)

2 and E2 =CDRAM · (VDD)
2. So we

can find the total energy by

Etot = E1 +E2 = 2 · 1
2

CDRAM · (VDD)
2

=CDRAM · (VDD)
2

Method II: The capacitors are in parallel, so the equivalent capacitance is given by Ceq = CDRAM +
CDRAM = 2CDRAM. The voltage across the parallel combination is VDD. So the energy stored in Ceq is
given by:

Etot =
1
2

Ceq · (VDD)
2

=
1
2
×2CDRAM · (VDD)

2

=CDRAM · (VDD)
2
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(e) (6 points) Finally! You make it to the lab! Unfortunately, you accidentally wind up introducing an
additional capacitive component, Cmistake.
Before your grad student mentor finds out your mistake, you’d like to quickly add an additional capac-
itor Cfix, as shown in in Figure 8.5, so that the equivalent capacitance between nodes a and b becomes
the same as CDRAM.

a

CDRAM

Cmistake

Cfix

b

Figure 8.5: Your fabricated DRAM cell with an additional mistake capacitance, Cmistake, and a capacitance
intentionally added to fix the mistake, Cfix.

Find the expression for Cfix so that the equivalent capacitance between nodes a and b is CDRAM.
Assume Cmistake > CDRAM. Show your work. Your answer should be in terms of CDRAM and
Cmistake.

Hint: You can start by expressing equivalent capacitance of the network in the dashed box as a function
of CDRAM, Cfix and Cmistake.
Solution:
The key here is to recognize the series + parallel combination of all three capacitances in the picture,
and to equate the result to the desired equivalent capacitance (in this case, Cequiv =CDRAM). Therefore,
we will set up the expression for equivalent capacitance Cequiv and rearrange to solve for Cfix.

Cequiv =
( 1

Cmistake
+

1
CDRAM +Cfix

)−1

=⇒ CDRAM =
( 1

Cmistake
+

1
CDRAM +Cfix

)−1

Rearranging and solving for Cfix:

CDRAM =
(CDRAM +Cfix) ·Cmistake

CDRAM +Cfix +Cmistake

CDRAMCmistake +C2
DRAM +CDRAMCfix =CDRAMCmistake +CfixCmistake

C2
DRAM =Cfix(Cmistake−CDRAM)

Cfix =
C2

DRAM
Cmistake−CDRAM

Based on this final expression for Cfix, it is clear that we will be able to adjust for the additional mistake
capacitance since Cmistake > CDRAM, hence the expression of Cfix will give us a positive value. (Note
that we consider resistance and capacitance to be non-negative quantities for this class.)
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(f) (8 points) You made two DRAM cells, but due to some unfortunate error you end up with: C1 =
CDRAM

4
and C2 = CDRAM. You charge up C1 to test it and have placed initial voltage V1(0) = VDD on it. The
second capacitor C2 has not been charged yet and the initial voltage on C2 is V2(0) = 0V.
Now you close S2 at t = 0 so that C2 can share charge from C1, while S1 remains closed, as in Fig. 8.6.
Find V1 and V2 at steady-state after switch S2 is closed and switch S1 remains closed. Your final
answer should be in terms of CDRAM and VDD. Show your work and justify your answer.

switch S1

C1

+

−
V1

switch S2

C2

+

−
V2

Figure 8.6: Two DRAM cells in parallel. Switch S1 is closed (can be thought of as a wire), and switch S2 is
closing.

Solution:
We will apply the property of charge conservation to solve for the final voltage on the two DRAM
capacitors. Prior to switch S2 closing, the initial charges on both capacitors are given by:

Q1,i =C1VDD; Q2,i =C2(0V). (1)

We can write the following equation of charge conservation:

Q1,i +Q2,i == Q1, f +Q2, f (2)

C1VDD +C2(0V) = Q1, f +Q2, f (3)

=⇒ CDRAM

4
VDD = Q1, f +Q2, f (4)

where Q1, f represents the final charge on C1 and Q2, f represents the final charge on C2 after switch S2
is closed.
After switch S2 is closed, notice that both capacitors are then in parallel. This means that the final
steady stage voltage on both should be equal to one another, i.e. V1 = V2. We can therefore write a
second equation based on this condition:

V1 =
Q1, f

C1
=V2 =

Q2, f

C2
(5)

=⇒ Q1, f =C1V1 =
CDRAM

4
V1 (6)

Q2, f =C2V2 =CDRAMV2 (7)
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Let’s now substitute in the results of equations (6) and (7) into equation (4), keeping in mind that
V1 =V2 after S2 is closed. We can solve for V1 first:

CDRAM

4
VDD =

CDRAM

4
V1 +CDRAMV2 (8)

=⇒ CDRAM

4
VDD =

CDRAM

4
V1 +CDRAMV1 (9)

=⇒ CDRAM

4
VDD =

5
4

CDRAMV1 (10)

=⇒ V1 =
VDD

5
. (11)

Since V1 =V2 we have:

V2 =
VDD

5
.

EECS 16A, Fall 2020, Midterm 2 27


