
EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2019
Kannan Ramchandran April 9, 2019

Midterm 2

Last Name First Name SID

Rules.

• No form of collaboration between the students is allowed. If you are caught cheating, you
may fail the course and face disciplinary consequences.

• You have 10 minutes to read the exam and 100 minutes to complete it.

• The exam is not open book; we are giving you a cheat sheet. No calculators or phones
allowed.

• Unless otherwise stated, all your answers need to be justified. Show all your work to get
partial credit.

• Maximum you can score is 114 but 100 points is considered perfect.

Problem points earned out of

Problem 1 44

Problem 2 20

Problem 3 32

Problem 4 18

Total 114
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Problem 1: Answer these questions briefly but clearly.

(a) [4] Which of the following frequencies for A,B,C and D can generate the following Huffman
tree? (Select all that apply.)

DC

0 1

BA

0 1

0 1

© pA = 0.4 , pB = 0.3 , pC = 0.2 , pD = 0.1

© pA = 0.35 , pB = 0.25 , pC = 0.2 , pD = 0.2

© pA = 0.25 , pB = 0.25 , pC = 0.25 , pD = 0.25

© pA = 0.2 , pB = 0.35 , pC = 0.2 , pD = 0.25

2,3

(b) [2+2+2] Consider the the Markov Chain (Xn)n∈N whose transitions are given by

0 1 2
1

1/2

1/2
1

1. Xn converges almost surely. True False

If true, it converges a.s. to (N/A if false):

2. Xn converges in probability. True False

If true, it converges i.p. to (N/A if false):

3. Xn converges in distribution. True False

If true, it converges in distribution to (N/A if false):

All True. It converges to 2. The possible values of the sequence (Xn) look like

(0, 1, 0, 1, 0, 1 . . . (some finte number of 0,1s and eventually) 0, 1, 2, 2, 2, . . . 2 forever)
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except for the one sequence of infinitely repeating 0, 1 oscillations and this has probability 0.
So with probability 1(almost surely), Xn converges to 2. Since it converges almost surely, it
certainly converges in probability and in distribution to 2.

(c) [6] Construct a reversible Markov Chain which has one positive recurrent class, one transient
class, and one null recurrent class.

0-1-2 1 2 . . .
1/2

1/2

1

1

1/2

1/2

1/2

1/2

Since there is one PR class there is a unique stationary distribution, which is just the stationary
distribution of the PR class viewed in isolation ( (1/2, 1/2) in the above example). The long term
averages for the transient state (0) and the null recurrent states (1, 2 . . . ) are 0. We just need to
construct the PR class to satisfy detailed balance. It is easily verified that this is one such case.

(d) [6] Random Walk on a Random Graph: A particle performs a random walk on a graph
with 3 vertices, labeled 1, 2 and 3, starting from state 1. However, at each time-step, before
the particle makes a move, the edges of the graph are re-sampled according to an independent
G(3, 1/2) distribution. Once the edges have been sampled, the particle chooses a neighbor of
its current state uniformly at random from the vertices connected to it. What is the expected
number of time-steps before the particle hits state 3?

(Note: G(n, p) refers to the Erdos-Renyi random graph on n vertices where each edge exists
independently with probability p, as introduced in lecture.)

Let Ti be the expected hitting time to state 3 starting from state i . By symmetry, T1 = T2
and T3 = 0.

With probability 1/4 the particle stays in state 1 in the next step. With probability (1/4 +
1/8) the particle goes to state 2. With probability (1/4 + 1/8) it goes to state 3. So we have
the single equation:

T1 = 1 + (1/4)T1 + (3/8)T1

Solving this gives T1 = 8/3 .

Alternative Solution:
The probability of hitting 3 on the next step is 3/8 from state 1 or state 2. Therefore, the
process is equivalent to flipping a coin with a 3/8 probability of coming up heads. The hitting
time to state 3 therefore is just the expectation of a Geom(3/8) random variable which is 8/3 .
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(e) [3+3] Interarrival Times: A factory’s production line outputs items according to a Pois-
son Process with rate λ .

1. If each item is defective with probability 1/3, what is the distribution of the time between
the arrivals of two successive defective items? What is its expectation?

Exp(λ/3) , 3/λ

2. If every third item is defective, what is the distribution of the time between the arrivals
two successive defective items? What is its expectation?

Erlang (3, λ) , 3/λ

(f) [2+2+2] Convergence in Probability: Let X1, ..., Xn be independent continuous ran-
dom variables Uniform in [0,1]. Let Yn = max({X1, ..., Xn}) , and Zn = max({X1, ..., Xn}\Yn) .
In other words Yn is the largest element of the n variables and Zn is the second largest element.

1. What is P(Yn < 1− ε) , for some ε > 0?

P(Yn < 1− ε) = (P(X1 < 1− ε))n = (1− ε)n

2. What is P(Zn < 1− ε) , for some ε > 0?

There are two cases: corresponding to whether the maximum of X1, ..., Xn is less or
greater than 1− ε . Hence, P(Zn < 1− ε) = (1− ε)n + n(1− ε)n−1ε

3. Show that Yn − Zn converges in probability to 0.

Hint: You may use the fact that if An
P−→ a and Bn

P−→ b for constants a and b , then

An +Bn
P−→ a+ b

Let ε > 0 . Then P(Yn < 1 − ε) = (1 − ε)n → 0 as n → ∞ , so Yn
P−→ 1 . Then

P(Zn < 1 − ε) = (1 − ε)n + n(1 − ε)n−1ε → 0 as n → ∞ . The left term approaches 0 as
before, and also (1− ε)n−1 decreases exponentially faster than n grows, so that the right

term also approaches 0. Thus, Zn
P−→ 1 . Using the hint yields the answer directly.
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(g) [4] Simulated CTMC: Consider the Continuous-time Markov Chain (CTMC) shown
below.

1

2 3

1

1

3

3

3

Construct a Discrete-time Markov Chain (DTMC) that has the same stationary distribution as
the above chain.

1

2 3

2/3

1/6

1/6

1/2

1/2

1/2

1/2

(h) [6] Cascaded BEC channel: It is desired to transmit reliably over a composite chan-
nel comprising a cascade of two back-to-back BEC(p ) channels (Binary Erasure Channels with
erasure probability equal to p ). What is the capacity (i.e. maximum rate at which you can
transmit reliably) of this composite channel? (Recall that the capacity of a single BEC(p )
channel is (1− p) bits per channel use.)

The two cascaded BECs effectively form a BEC with erasure probability p+ p− p2 = 2p− p2 .
Thus the new rate is 1− 2p+ p2 = (1− p)2
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Problem 2 [20]: Frisbee Attempts
The probability that a frisbee player will catch the frisbee depends on the results of her last two
attempts, and is given by

P(catch) =


1/2, if she dropped during both of her last two attempts

2/3, if she catches in exactly one of the two the last two attempts

3/4, if she catches in both of her last two attempts.

(a) [3] Let Xi = 1 if you just caught the frisbee, and Xi = 0 otherwise; show with the help
of an example that Xi is not a Markov chain.

It’s not as it depends on last two catches. Based on this we can construct an exam-
ple showing the Markov Property doesnt hold.

(b) [5] Let the states be denoted by ordered tuples (Xi, Xi+1) ; argue that this is a Markov
chain. Draw the transition diagram.

Let the states be {DD, DC, CD, CC}, where DC means the second last attempt was a
drop and the last attempt was a catch, etc. The underlying Markov chain is

DD DC

CD CC

1/2
1/2

2/31/3

1/3

2/3

3/4
1/4

(c) [5] Find the stationary distribution.

Solving for stationary distribution yields π [DD, DC, CD, CC] = [1/8, 3/16, 3/16, 1/2] .

(d) [4] Calculate the long-term fraction of times she catches the frisbee.

The limiting fraction of catches = 1
2 [2π(CC) + π(CH) + π(HC)] = 11

16 .

(e) [3] Is this chain reversible? Justify your answer.

No. Check states DD and DC, for example.
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Problem 3 [32]: please do this thanks ray
Students ask logistical questions on Piazza according to a Poisson process of rate λ . Ray checks
Piazza according to an independent Poisson process of rate µ . Every time Ray checks Piazza,
he answers all logistical questions instantaneously.

(a) [3] Let’s say Ray checked Piazza for the first time at time t , and there were n unanswered
logistical questions. What is the expected time when the first question showed up?

This is the first order statistic of n uniform random variables in [0,t]. Hence, the ex-
pectation is t/(n+ 1) .

(b) [4] Ray just finished answering logistical questions, what is the expected number of logis-
tical questions he will have to answer next time he checks Piazza?

We can represent the number of questions Ray will have to answer as the r.v. X ∼
Geom( µ

µ+λ)− 1 (same as hw9 q1b). Thus, the expected number of questions he will have
to answer is ((µ+ λ)/µ)− 1 = λ/µ . .

Alternative Solution:
Let T be the time until Ray checks piazza again. Then E(X) = E(E(X|T )) = E(λT ) =
λE(T ) = λ/µ

(c) [5] What is the expected number of times Ray will check Piazza before he is greeted with
a nightmare of ≥ n unanswered logistical questions (including the time he’s greeted with
the nightmare)?

We can model this as a Geom(p) random variable with p =
(

λ
λ+µ

)n
. Thus, the ex-

pected number of times until this event occurs is
(
λ+µ
λ

)n
.

(d) [3] We can model the number of outstanding logistical requests as a CTMC with the nat-
ural numbers as the state space (0, 1, 2, . . . ). Draw this CTMC.

0 1 2 . . .

λ

µ

λ

µ

λ

µ
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(e) [6] Find the long term fraction of time for which there are no outstanding logistical ques-
tions.

We can solve this using the balance equations of the states starting from 1. We know
that (λ + µ)π1 = λπ0 , and (λ + µ)π2 = λπ1 and so on. By induction, we see that

πi =
(

λ
λ+µ

)i
π0 for any state i . We just need to normalize this to 1 to formulate a valid

stationary distribution. Since this is a geometric series, we can set π0 = µ
λ+µ to have the

series converge to 1.

(f) [3] Is this CTMC positive recurrent, null recurrent or transient? (If it depends on λ , µ ,
specify how so).

It is positive recurrent for all λ, µ as a stationary distribution exists regardless of the
values of λ, µ .

(g) [8] A student just posted the third logistical question since Ray’s last check. What is the
expected time until the next moment when there are exactly two outstanding logistical
questions?

This is just the expected time until Ray’s next check ( 1
µ ) + the expected time for the next

question to be posted after that ( 1
λ ) + the expected hitting time to 2 from 1(β2(1) ).

To calculate β2(1) , we have

β2(1) =
1

λ+ µ
+

µ

λ+ µ
β2(0)

=
1

λ+ µ
+

µ

λ+ µ
(1/λ+ β2(1))

λ

λ+ µ
β2(1) =

1 + µ
λ

λ+ µ

β2(1) =
λ+ µ

λ2

So the final answer is
1

µ
+

1

λ
+
λ+ µ

λ2
=

(λ+ µ)2

λ2µ
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Problem 4 [18]: Plants vs. Zombies

Efe decides the current version of Plants vs. Zombies is too easy for him, so he undertakes the
task of writing a new version of the game. He’s currently writing the randomizer for zombies
entering the screen, and needs your help to analyze how many zombies will appear on each level.
Suppose that at the beginning of each level Efe creates Y ∼ Poisson(µ ) zombie generators,
and each zombie generator independently creates zombies according to a Poisson Process with
parameter λ . Each level lasts for T seconds, where T is fixed. Let N be the number of zombies
generated in a given level.

(a) [6] Find E[N ] .

E[N ] = E[E[N |Y ]]
Conditioned on Y, we can merge the individual rate λ processes to get a Poisson process
with rate Y λ .
Thus, conditioned on Y , N ∼ Pois(Y λT ) .
Thus E[N |Y ] = Y Tλ
From that, we have the final result as Tλµ

(b) [6] Find var(N) .

We use the Law of Total Variance.

var(N) = E[var(N |Y )] + var(E[N |Y ])

Note that N |Y ∼ Poisson(λTY )

var(N) = E[λTY ] + var(λTY )

= λTE[Y ] + λ2T 2var(Y )

= λµT + λ2T 2µ

= λµT (1 + λT )
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(c) [6] Now suppose that Efe runs his simulation for 100 levels. Assume you are told that
λ < 2 zombies/sec and µ < 5 . Using the CLT and

∑100
i=1Ni/n as an estimator, construct

a 95% confidence interval for E[N ] .
Hint: For Z ∼ N (0, 1),P(−1.96 ≤ Z ≤ 1.96) = 0.95 .

Let Ni be the number of zombies created on a level. We want to use the CLT to
find a confidence interval for E[N ] .

The CLT states that An−E[N ]
σ2
N/n

∼ N (0, 1) where the sample average An =
∑n

i=1Ni

n . We

have already computed σ2N in part (b).

Using the hint, a 95% confidence interval for E[N ] is (An − 1.96

√
σ2
N
n , An + 1.96

√
σ2
N
n )

Plugging in n = 100gives us

(An − 0.196
√
λµT (1 + λT ), An + 0.196

√
λµT (1 + λT ))

Now we just need to use our upper bounds on λ and µ to get the result -

(An − 0.196
√

20T 2 + 10T ,An + 0.196
√

20T 2 + 10T ))
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