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Midterm 2

Last Name First Name SID

Rules.

• No form of collaboration between the students is allowed. If you are caught cheating, you
may fail the course and face disciplinary consequences.

• You have 10 minutes to read the exam and 100 minutes to complete it.

• The exam is not open book; we are giving you a cheat sheet. No calculators or phones
allowed.

• Unless otherwise stated, all your answers need to be justified. Show all your work to get
partial credit.

• Maximum you can score is 114 but 100 points is considered perfect.

Problem points earned out of

Problem 1 44

Problem 2 20

Problem 3 32

Problem 4 18

Total 114
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Problem 1: Answer these questions briefly but clearly.

(a) [4] Which of the following frequencies for A,B,C and D can generate the following Huffman
tree? (Select all that apply.)

DC

0 1

BA

0 1

0 1

© pA = 0.4 , pB = 0.3 , pC = 0.2 , pD = 0.1

© pA = 0.35 , pB = 0.25 , pC = 0.2 , pD = 0.2

© pA = 0.25 , pB = 0.25 , pC = 0.25 , pD = 0.25

© pA = 0.2 , pB = 0.35 , pC = 0.2 , pD = 0.25

(b) [2+2+2] Consider the the Markov Chain (Xn)n∈N whose transitions are given by

0 1 2
1

1/2

1/2
1

1. Xn converges almost surely. True False

If true, it converges a.s. to (N/A if false):

2. Xn converges in probability. True False

If true, it converges i.p. to (N/A if false):

3. Xn converges in distribution. True False

If true, it converges in distribution to (N/A if false):
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(c) [6] Construct a reversible Markov Chain which has one positive recurrent class, one transient
class, and one null recurrent class.

(d) [6] Random Walk on a Random Graph: A particle performs a random walk on a graph
with 3 vertices, labeled 1, 2 and 3, starting from state 1. However, at each time-step, before
the particle makes a move, the edges of the graph are re-sampled according to an independent
G(3, 1/2) distribution. Once the edges have been sampled, the particle chooses a neighbor of
its current state uniformly at random from the vertices connected to it. What is the expected
number of time-steps before the particle hits state 3?

(Note: G(n, p) refers to the Erdos-Renyi random graph on n vertices where each edge exists
independently with probability p, as introduced in lecture.)
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(e) [3+3] Interarrival Times: A factory’s production line outputs items according to a
Poisson Process with rate λ .

1. If each item is defective with probability 1/3, what is the distribution of the time between
the arrivals of two successive defective items? What is its expectation?

2. If every third item is defective, what is the distribution of the time between the arrivals
two successive defective items? What is its expectation?

(f) [2+2+2] Convergence in Probability: Let X1, ..., Xn be independent continuous ran-
dom variables Uniform in [0,1]. Let Yn = max({X1, ..., Xn}) , and Zn = max({X1, ..., Xn}\Yn) .
In other words Yn is the largest element of the n variables and Zn is the second largest element.

1. What is P(Yn < 1− ε) , for some ε > 0?

2. What is P(Zn < 1− ε) , for some ε > 0?
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3. Show that Yn − Zn converges in probability to 0.

Hint: You may use the fact that if An
P−→ a and Bn

P−→ b for constants a and b , then

An +Bn
P−→ a+ b

(g) [4] Simulated CTMC: Consider the Continuous-time Markov Chain (CTMC) shown
below.

1

2 3

1

1

3

3

3

Construct a Discrete-time Markov Chain (DTMC) that has the same stationary distribution as
the above chain.
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(h) [6] Cascaded BEC channel: It is desired to transmit reliably over a composite channel
comprising a cascade of two back-to-back BEC(p ) channels (Binary Erasure Channels with
erasure probability equal to p ). What is the capacity (i.e. maximum rate at which you can
transmit reliably) of this composite channel? (Recall that the capacity of a single BEC(p )
channel is (1− p) bits per channel use.)
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Problem 2 [20]: Frisbee Attempts
The probability that a frisbee player will catch the frisbee depends on the results of her last two
attempts, and is given by

P(catch) =


1/2, if she dropped during both of her last two attempts

2/3, if she catches in exactly one of the two the last two attempts

3/4, if she catches in both of her last two attempts.

(a) [3] Let Xi = 1 if you just caught the frisbee, and Xi = 0 otherwise; show with the help
of an example that Xi is not a Markov chain.

(b) [5] Let the states be denoted by ordered tuples (Xi, Xi+1) ; argue that this is a Markov
chain. Draw the transition diagram.
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(c) [5] Find the stationary distribution.

(d) [4] Calculate the long-term fraction of times she catches the frisbee.

(e) [3] Is this chain reversible? Justify your answer.
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Problem 3 [32]: please do this thanks ray
Students ask logistical questions on Piazza according to a Poisson process of rate λ . Ray checks
Piazza according to an independent Poisson process of rate µ . Every time Ray checks Piazza,
he answers all logistical questions instantaneously.

(a) [3] Let’s say Ray checked Piazza for the first time at time t , and there were n unanswered
logistical questions. What is the expected time when the first question showed up?

(b) [4] Ray just finished answering logistical questions, what is the expected number of logis-
tical questions he will have to answer next time he checks Piazza?

(c) [5] What is the expected number of times Ray will check Piazza before he is greeted with
a nightmare of ≥ n unanswered logistical questions (including the time he’s greeted with
the nightmare)?
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(d) [3] We can model the number of outstanding logistical requests as a CTMC with the
natural numbers as the state space (0, 1, 2, . . . ). Draw this CTMC.

(e) [6] Find the long term fraction of time for which there are no outstanding logistical ques-
tions.

(f) [3] Is this CTMC positive recurrent, null recurrent or transient? (If it depends on λ , µ ,
specify how so).
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(g) [8] A student just posted the third logistical question since Ray’s last check. What is the
expected time until the next moment when there are exactly two outstanding logistical
questions?
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Problem 4 [18]: Plants vs. Zombies

Efe decides the current version of Plants vs. Zombies is too easy for him, so he undertakes the
task of writing a new version of the game. He’s currently writing the randomizer for zombies
entering the screen, and needs your help to analyze how many zombies will appear on each level.
Suppose that at the beginning of each level Efe creates Y ∼ Poisson(µ ) zombie generators,
and each zombie generator independently creates zombies according to a Poisson Process with
parameter λ . Each level lasts for T seconds, where T is fixed. Let N be the number of zombies
generated in a given level.

(a) [6] Find E[N ] .

(b) [6] Find var(N) .
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(c) [6] Now suppose that Efe runs his simulation for 100 levels. Assume you are told that
λ < 2 zombies/sec and µ < 5 . Using the CLT and

∑100
i=1Ni/n as an estimator, construct

a 95% confidence interval for E[N ] .
Hint: For Z ∼ N (0, 1),P(−1.96 ≤ Z ≤ 1.96) = 0.95 .
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