
CS 61A Structure and Interpretation of Computer Programs
Fall 2020 Midterm 2

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your

solutions before the exam deadline.

This exam is intended for the student with email address haliwu123@berkeley.edu. If this is not your email address,

notify course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends,

as some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at 09:00PM Pacific Time. Go to the next page to begin.

Exam generated for haliwu123@berkeley.edu 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

Exam generated for haliwu123@berkeley.edu 3

1. (8 points) Political Environment

Fill in each blank in the code example below so that executing it would generate the following environment

diagram.

RESTRICTIONS. You must use all of the blanks. Each blank can only include one statement or expression.

Click here to open the diagram in a new window/tab

def v(o, t, e):
def m(y):

(a)

(b)

def n(o):

o.append(_________)

Exam generated for haliwu123@berkeley.edu 4

(c)

o.append(_________)
(d)

m(e)
n([t])
e = 2

m = [3, 4]

v(m, 5, 6)

(a) (2 pt) Fill in blank (a). You may not write any numbers or arithmetic operators (+, -, *, /,
//, **) in your solution.

(b) (2 pt) Fill in blank (b). You may not write any numbers or arithmetic operators (+, -, *, /,
//, **) in your solution.

(c) (2 pt) Fill in blank (c). You may not write any numbers or arithmetic operators (+, -, *, /, //,
**) in your solution.

(d) (2 pt) Which of these could fill in blank (d)? Check all that apply.

2 [o[0], o[1]]

2 o

2 [list(o)]

2 o + []

2 list(o)

2 list([o])

2 o[:]

2 [o]

Exam generated for haliwu123@berkeley.edu 5

2. (10 points) Yield, Fibonacci!

(a) (4 points)

Implement fibs, a generator function that takes a one-argument pure function f and yields all Fibonacci

numbers x for which f(x) returns a true value.

The Fibonacci numbers begin with 0 and then 1. Each subsequent Fibonacci number is the sum of the

previous two. Yield the Fibonacci numbers in order.

def fibs(f):
"""Yield all Fibonacci numbers x for which f(x) is a true value.

>>> odds = fibs(lambda x: x % 2 == 1)
>>> [next(odds) for i in range(10)]
[1, 1, 3, 5, 13, 21, 55, 89, 233, 377]
>>> bigs = fibs(lambda x: x > 20)
>>> [next(bigs) for i in range(10)]
[21, 34, 55, 89, 144, 233, 377, 610, 987, 1597]
>>> evens = fibs(lambda x: x % 2 == 0)
>>> [next(evens) for i in range(10)]
[0, 2, 8, 34, 144, 610, 2584, 10946, 46368, 196418]
"""

n, m = 0, 1

while _________:
(a)

if _________:
(b)

(c)

(d)

i. (1 pt) Which of these could fill in blank (a)?

True

f(m)

False

f(n) or f(m)

f(n)

f(n) and f(m)

Exam generated for haliwu123@berkeley.edu 6

ii. (1 pt) Which of these could fill in blank (b)?

False

f(m)

True

f(n) and f(m)

f(n)

f(n) or f(m)

iii. (1 pt) Fill in blank (c).

iv. (1 pt) Fill in blank (d).

7

(b) (6 points)

Definition. For a linked list s, the index of an element is the number of times rest appears in the smallest

dot expression containing only s, rest, and first that evaluates to that element. For example, in the

linked list s = Link(5, Link(7, Link(9, Link(11)))),

Part I

T
he index of 5 (s.first) is 0.

Part II

T
he index of 7 (s.rest.first) is 1.

Part III

T
he index of 11 (s.rest.rest.rest.first) is 3.

Implement filter_index, a function that takes a one-argument pure function f and a Link instance s. It

returns a Link containing all elements of s that have an index i for which f(i) returns a true value.

Assume that s is a finite linked list of numbers that contains no repeated elements. The Link class appears

on Page 2 (left column) of the Midterm 2 Study Guide.

def filter_index(f, s):
"""Return a Link containing the elements of Link s that have an index i for
which f(i) is a true value.

>>> powers = Link(1, Link(2, Link(4, Link(8, Link(16, Link(32))))))
>>> filter_index(lambda x: x < 4, powers)
Link(1, Link(2, Link(4, Link(8))))
>>> filter_index(lambda x: x % 2 == 1, powers)
Link(2, Link(8, Link(32)))
"""

def helper(i, s):

if s is Link.empty:

return s

filtered_rest = _________
(a)

if _________:
(b)

return _________
(c)

8

else:

return filtered_rest

return _________
(d)

i. (1 pt) Which of these could fill in blank (a)?

filter_index(f, s.rest.rest)

Link(helper(i + 1, s.rest))

helper(i + 1, s.rest.rest)

helper(i + 1, s.rest)

Link(filter_index(f, s.rest.rest))

filter_index(f, s.rest)

Link(filter_index(f, s.rest))

Link(helper(i + 1, s.rest.rest))

ii. (1 pt) Fill in blank (b).

iii. (2 pt) Fill in blank (c).

iv. (2 pt) Fill in blank (d).

9

3. (12 points) Sparse Lists

The most_common function returns the most common element in a non-empty list. You do not need to implement

this function. Assume that it is implemented for you.

def most_common(s):
"""Return the most common element in non-empty list s. In case of a tie,
return the most common element that appears first in s.

>>> most_common([3, 1, 4, 1, 5, 9])
1
>>> most_common([3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5])
5
>>> most_common([2, 7, 1, 8, 2, 8, 1, 8, 2, 8])
8
>>> most_common([3, 5, 7, 7, 7, 5, 5])
5
>>> most_common([3, 7, 5, 5, 7, 7])
7
"""

Implement the SparseList class. A SparseList instance represents a non-empty list s.

Part IV

I
ts common attribute is the most common value in s.

Part V

I
ts others dictionary has a value for every element in s that is not common. The corresponding key is the index

for that value in s.

Part VI

I
ts part method takes a non-negative integer i and returns s[i] or the string 'out of range' if i is not

smaller than the length of s.

Part VII

I
ts parts method returns a list with the same elements as s in the same order as s.

class SparseList:
"""Represent a non-empty list as a most common value and a dictionary from
indices to values that contains only values that are not the most common.

10

>>> pi = SparseList([3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5])
>>> pi.common
5
>>> pi.others
{0: 3, 1: 1, 2: 4, 3: 1, 5: 9, 6: 2, 7: 6, 9: 3}
>>> [pi.part(0), pi.part(1), pi.part(2), pi.part(3), pi.part(4)]
[3, 1, 4, 1, 5]
>>> pi.part(10)
5
>>> pi.part(11)
'out of range'
>>> pi.parts()
[3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]
"""
def __init__(self, s):

...
def part(self, i):

...
def parts(self):

...

(a) (5 points)

Implement the __init__ method, which takes a list s.

def __init__(self, s):

assert s, 's cannot be empty'

self.n = len(s)

self.common = most_common(_________)
(a)

self.others = { _________: _________ for i in range(_________) if _________ }
(b) (c) (d) (e)

i. (1 pt) Fill in blank (a).

ii. (1 pt) Which of these could fill in blank (b)?

s

i

n

self.i

s[i]

self.n

11

iii. (1 pt) Fill in blank (c).

iv. (1 pt) Which of these could fill in blank (d)? Check all that apply.

2 n

2 s

2 len(s)

2 self.s

2 len(n)

2 self.n

2 len(self.s)

2 len(self.n)

v. (1 pt) Fill in blank (e).

12

(b) (3 points)

Implement the part method, which takes a non-negative integer i.

def part(self, i):
"""Return s[i] or 'out of range' if i is not smaller than the length of s."""

assert i >= 0, 'index i must be non-negative'

if _________:
(a)

return 'out of range'

elif _________:
(b)

return _________
(c)

else:

return self.common

i. (1 pt) Fill in blank (a).

ii. (1 pt) Fill in blank (b).

iii. (1 pt) Which of these could fill in blank (c)?

others[self.i]

others

self.others[i]

self.others

others[i]

self.others[self.i]

13

(c) (4 points)

Implement the parts method.

def parts(self):

"""Return a list with the same elements as s in the same order as s."""

return [_________ for i in _________]
(a) (b)

i. (2 pt) Fill in blank (a). You may not use and, or, if, else, [,], or get.

Hint : Don’t repeat yourself.

ii. (2 pt) Fill in blank (b).

14

4. (20 points) Fork It

The tree data abstraction, which is implemented by the constructor tree, selectors branches and label, and

helper functions is_leaf and is_tree appear on Page 2 (left column) of the Midterm 2 Study Guide. You

may call these functions. Do not violate the abstraction barriers of the tree data abstraction.

(a) (4 points)

Implement max_path, which takes a tree t whose labels are all positive numbers and returns the largest

sum of the labels along a path from the root of t to one of its leaves.

You may call tree, label, branches, is_leaf, is_tree, and max_path.

def max_path(t):
"""Return the largest sum of labels along any path from the root to a leaf
of tree t, which has positive numbers as labels.

>>> a = tree(1, [tree(2), tree(3), tree(4, [tree(5)])])
>>> max_path(a) # 1 + 4 + 5
10
>>> b = tree(6, [a, a, a])
>>> max_path(b) # 6 + 1 + 4 + 5
16
"""

return _________ + max(_________ + _________)
(a) (b) (c)

i. (1 pt) Which of the following could fill in blank (a)?

sum([b for b in branches(t)])

[t]

[0]

[label(t)]

sum([label(b) for b in branches(t)])

label(t)

t

ii. (1 pt) Which of the following could fill in blank (b)?

[label(t)]

label(t)

t

[0]

[t]

[label(b) for b in branches(t)]

iii. (2 pt) Fill in blank (c). You may not use the word default.

15

(b) (8 points)

Definition. A fork is a tree in which exactly one node has more than one child.

Implement is_fork and its helper function traverse. The is_fork function takes a tree t and returns

True if t is a fork and False otherwise.

You may call tree, label, branches, is_leaf, is_tree, max_path, is_fork, and traverse.

def is_fork(t):
"""Return whether tree t is a fork.

>>> is_fork(tree(1, [tree(2, [tree(3), tree(4), tree(5)])]))
True
>>> is_fork(tree(1, [tree(2, [tree(3)]), tree(4)]))
True
>>> is_fork(tree(1, [tree(2), tree(3), tree(4)]))
True
>>> is_fork(tree(1, [tree(2, [tree(3, [tree(5)]), tree(4, [tree(6)])])]))
True
>>> is_fork(tree(1))
False
>>> is_fork(tree(1, [tree(2, [tree(3)])]))
False

16

>>> is_fork(tree(1, [tree(2, [tree(3)]), tree(4, [tree(5), tree(6)])]))
False
>>> is_fork(tree(1, [tree(2, [tree(3, [tree(5, [tree(7), tree(8)]), tree(6)]), tree(4)])]))
False
"""

crux = traverse(t)

if is_leaf(crux):

(a)

return _________([_________ for b in branches(_________)])
(b) (c) (d)

def traverse(t):
"""Return the deepest node within tree t whose ancestors all have exactly one child.

Definition: The ancestors of a node include its parent and the parents of all its ancestors.

>>> deepest = traverse(tree(1, [tree(2, [tree(3)])]))
>>> label(deepest)
3
>>> label(traverse(tree(1, [tree(2, [tree(3), tree(4)])])))
2
"""

while _________:
(e)

t = _________
(f)

return t

i. (1 pt) Fill in blank (a).

ii. (1 pt) Which of the following could fill in blank (b)?

branches

all

list

any

tree

label

17

iii. (2 pt) Fill in blank (c).

iv. (1 pt) Which of the following could fill in blank (d)?

tree

label(crux)

t

crux

label(tree)

label(t)

v. (1 pt) Which of the following could fill in blank (e)?

len(branches(t)) != 1

branches(t) > 1

len(branches(t)) == 1

len(branches(t)) > 1

branches(t) != 1

branches(t) == 1

vi. (2 pt) Fill in blank (f).

18

(c) (8 points)

Definition. A tree t contains a fork u if u is the result of pruning zero or more nodes from t.

Implement max_fork, which takes a tree t whose labels are all positive integers. It returns the largest sum

of the labels of a fork that is contained in t. If t does not contain any forks, then max_fork returns 0.

You may call tree, label, branches, is_leaf, is_tree, max_path, is_fork, traverse, and max_fork.

def max_fork(t):
"""Return the largest sum of the labels in any fork contained in tree t,
which has positive numbers as labels. If t contains no forks, return 0.

>>> a = tree(1, [tree(2), tree(3), tree(4, [tree(5)])])
>>> max_fork(a) # 1 + 2 + 3 + 4 + 5
15
>>> b = tree(6, [a, a, a])
>>> max_fork(b) # 6 + (1 + 4 + 5) + (1 + 4 + 5) + (1 + 4 + 5)
36
>>> c = tree(7, [tree(8), b, tree(9)])
>>> max_fork(c) # 7 + (6 + (1 + 4 + 5) + (1 + 4 + 5) + (1 + 4 + 5))
43
>>> d = tree(9, [c])
>>> max_fork(d) # 9 + 7 + (6 + (1 + 4 + 5) + (1 + 4 + 5) + (1 + 4 + 5))
52
>>> max_fork(tree(1, [tree(2, [tree(3)])])) # No forks here!
0
"""

n = len(branches(t))

if n == 0:

return 0

elif n == 1:

below = _________
(a)

if _________:
(b)

19

return _________ + below
(c)

else:

return 0

else:

here = sum([_________ for b in branches(t)])
(d)

there = max([_________ for b in branches(t)])
(e)

return label(t) + max(here, there)

i. (2 pt) Fill in blank (a).

ii. (1 pt) Which of the these could fill in blank (b)?

below > 0

True

max_fork(t) > max_path(t)

is_fork(t)

max_fork(t) > 0

label(t) > 0

iii. (1 pt) Which of these could fill in blank (c)?

1

label(traverse(t))

max_path(t)

max([label(b) for b in branches(t)])

label(branches(t)[0])

label(t)

iv. (2 pt) Fill in blank (d).

20

v. (2 pt) Fill in blank (e).

21

No more questions.

