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e You have 10 minutes to read the exam and 150 minutes to complete this exam.

e The maximum you can score is 130, but 100 points is considered perfect.

e The exam is not open book, but you are allowed to consult the cheat sheet that we provide.
No calculators or phones. No form of collaboration between the students is allowed. If
you are caught cheating, you may fail the course and face disciplinary consequences.

e A correct answer without justification will receive little, if any, credit.

e Take into account the points that may be earned for each problem when splitting your
time between the problems.

Problem points earned | out of
Problem 1 25
Problem 2 20
Problem 3 20
Problem 4 15
Problem 5 25
Problem 6 10
Problem 7 15

Total 100 (+30)




Problem 1: Answer these questions briefly but clearly. [25]
(a) Random Dog Walk [5]

A dog walks on the integers, possibly reversing direction at each step with probability p = 0.1.
Let Xg = 0. The first step is equally likely to be positive or negative. A typical walk might look
like this:

(zo, 21,29, 23,...) = (0,—-1,-2,-3,—-4,-3,-2,—-1,0,1,...).

True / False: The sequence of random variables (X,),>0 is a Markov chain.

P(Xpjo=k+2|Xp1=k+1,X,=Fk) =09 #
P(Xpio=k+2| Xpr1=k+1,X,=k+2)=0.1.

(b) MCMC [5]

Let {0,1} be the state space of a Markov chain. Suppose that we try to simulate from the
distribution 7 = [1 /2 1/ 2} via Metropolis-Hastings using the proposal distribution:

plz,y) =1 5 : r=0,1.
3

In other words, at state x we propose state y with probability p(z,y). What should we set the
acceptance probabilities A(x,y) to be in order to make the algorithm correct (i.e., the stationary
distribution of the chain is 7)?

In fact we can accept every proposal and the stationary distribution will correctly be 7.

(c) Book Shop [5]

A small book shop has room for at most two customers. Potential customers arrive at a Poisson
rate of ten customers per hour; they enter if there is room and are turned away, never to
return, otherwise. The bookie serves the admitted customers in order, requiring an exponentially
distributed time of mean four minutes per customer.

Suppose there are two customers in the store. Find the expected amount of time until the store
is empty again.
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Set up the hitting time equations.

Eo[To] = Ly Eq[To],

15
1 2
E,[To] = % + 5E2[T0]-

Solving these equations yields Eq[Tp] = 8/45.

(d) Random Graphs [5]

Let G be a random graph generated using the G(n,p) model. For what value of p is the ex-
pected number of cliques of five vertices in G equal to 1?7 (A cligue on n vertices is a subset of
n vertices such that for every pair of vertices in the clique, the edge between the vertices exists
in the graph.)

For a particular subset of five vertices, the probability that every possible edge exists is
5
p(2) = p'% There are (g) subsets of five vertices. Thus, the expected number of cliques, by

linearity of expectation, is (’;)plo. Thus, we should take p = (g)_l/lo.

(e) Graphical MMSE |[5]

Let (X,Y) be a pair of random variables which are uniformly distributed over the region shown
in Figure 1.

Figure 1: The region R is enclosed by the curves: y =0, y =1, y = 2%, y = (z — 2)%

Find E[X | Y].

The MMSE is the curve y = (x — 1)2, which connects the horizontal midpoints of the shaded
region, hence
EX |Y]=VY + 1.
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Figure 2: The MMSE is shown in red.



Problem 2: Waiting in Line for Infinity War (no spoilers) [20]

At 6:30 PM, there are 9 people waiting in line outside of the theater to watch Avengers: Infinity
War. People arrive and wait in line according to a Poisson process with rate 2 per minute.

(a) [5] Starting from 6:30 PM, the theater admits exactly one person every minute (i.e., at 6:31
PM, 6:32 PM, 6:33 PM, etc.). What is the expected number of people remaining in line the
instant after 6:40 PM?

Let Njg represent the number of people who have arrived between 6:30 PM and 6:40 PM.
Then, we are looking at E[max{Njo—1,0}]. With probability exp(—20), no one arrives between
6:30 PM and 6:40 PM. So, since Njo ~ Poisson(20),

> exp(—20)20* > exp(—20)20* > exp(—20)20*
k=1 ' k=1 ) k=1 ’

=20 — [1 — exp(—20)].

(b) [5] Suppose we observe the time Y at which the third new person arrives in line. What is
the MLE estimate for the time X at which the fourth new person arrives in line? (Assume that
X and Y are measured in minutes since 6:30 PM.)

Given X = z, we know that Y is the maximum of three ii.d. Uniform[0,z] random vari-
ables. Thus, for y € [0,z], P(Y <y | X =z) = (y/z)?, and so fy|x(y | ) = 3y*/x3. Thus, the
MLE estimate X for X given Y is argmax,-(3y%/2%)1{z > Y} =Y.

(c) [5] Starting from 6:40 PM, the theater stops letting in more people. The people in line
become fed up: each person in line, independently, waits an Exponential(1) amount of time and
then leaves the line. (People are still arriving in line according to the Poisson process of rate 2
per minute. If a new person arrives, he or she also waits an Exponential(1) amount of time be-
fore leaving the line.) After a long period of time, what is the average number of people in line?

The number of people in line is an M /M /oo queue with forward rate 2 and backwards rate 1;
the stationary distribution is Poisson with mean 2.

(d) [5] Meanwhile, inside the theater, the movie has already begun. Thanos appears on the
big screen according to a Poisson process of rate 1 per minute. On each of his appearances,
independently with probability 1/3 he makes the audience scream. An observer outside the
theater observes S, the number of times that the audience screams in the first 30 minutes.
What is the LLSE estimate of T', the number of times that Thanos appeared on the big screen
in the first 30 minutes, given S7

By the properties of the Poisson process, T' ~ Poisson(30) and S ~ Poisson(10). Calculate
E[ST] = E[E(ST | T)] = E[TE(S | T)] = E[T?]/3 = 930/3 = 310. Also, E[T] = 30 and



E[S] = 10, so cov(S,T) = 310 — 300 = 10. Also, var S = 10, so

L[T | 8] =30+ (S — 10) = 20 + 8.



Problem 3: Hypothesis Testing [20]

(a) [10] We want to test two hypotheses; we have prior knowledge that X ~ Bernoulli(2/3). In
both cases, our observation Y has the Laplace distribution, but with different mean and shape.
In particular

1 _
fyix(y]0) = 3¢ Wl yeR

1 _lv—2
fY\X(yH):Ze 2, yeR

Construct a decision rule r : R — {0, 1} that minimizes P(r(Y) # X) = E[I{r(Y) # X}] (use
the MAP rule).

P(X=0]Y) frx(Y]0)P(X
P(X=11Y) fyx(Y|1)P(X =

) l . leflyl
_ 33 _ olY=21/2-Y]
)~ 2. L2

Il
K=

Therefore,

Y —2
P(X=0]Y)<P(X=1|Y) < VA2V <1 — ¥-2

< Y|
2
<— YS—Qorng.

Thus the optimal decision rule is:

1 ify <=2
r(Y)=¢0 if —2<Y <2.
1 ify>2

Full points were only given for simplified decision rules.

(b) [10] We consider a standard hypothesis testing problem in which we have

a, Ww.p. % a, Ww.p. %
Y[X=0=14b wp. 1 and Y|X=1=4¢b wp. 1
c, W.p. %, c, W.p. %.

Design a randomized decision rule r : {a, b,c} — {0, 1} in order to minimize P(r(Y) =0 | X = 1)
subject to P(r(Y) =1] X =0) <0.3.

The likelihood ratio is



Looking at the likelihood ratio, we can see that L(a) > L(b) > L(c). We solve for the optimal
decision rule using neyman pearson, finding that A = 1. Thus, if Y = a we should always raise
the alarm. If we always raise the alarm when Y = b, then we would exceed the constraint on
the PFA, so we set the threshold at L(Y) = 1. The optimal randomized decision rule, by the
Neyman-Pearson Lemma, is

1 fY=a
r(Y)=<~ ifY =56
0 ifY=c

where the randomization 7 is found by P(Y = a | X =0)+~4P(Y =b| X =0) = 0.3, or v = 0.2.
Full points were only given for properly justified answers.



Problem 4: Estimating the Slope of a Line [15]

Suppose (X1,Y7),...,(Xn,Yy,) are i.i.d., where X7 ~ N (0,1) and Y7 | X3 = 2 ~ N (26, 1) where
0 € R is unknown.

(a) [8] Compute the MLE of 6 given the observations (Xi,Y1),..., (X, Yn).

Given x1,...,Zpn, Y1, ..., Yn € R, the joint density of the observations is
n
1 x2 1 (yi — x29)2
T1,Y1)s s (T, Yn); 0) = ex <——Z) ex (—7>
p((@1,01), -, (0, yn); 0) il;[lmp 2 ) o P 5

so the log-likelihood is

1 n
0(0; (X1,Y1), ..., (Xp, Yn)) = constant — 3 z;(y — X;0)%.

Differentiating w.r.t. 6, we have > " | X;(¥; — X;0) = 0 which gives
Z?:l XiY; _ n~! Z?:1 X;Y;
i X7 Tty X7

Check that this is indeed a global maximum. Does this look familiar? The MLE is exactly the
empirical covariance divided by the empirical variance of X, which should remind you of the
formula for the slope of the LLSE.

é:

(b) [7] Compute E[X7 | Yi].

First, observe that (X1,Y7) is joint Gaussian so E[X; | V1] = L[X; | Y1]. Then, X; is zero mean
and E[Y1] = E[E[Y] | X1]] = E[6X:] = 0 as well. So, calculating

cov(X1,Y1) = E[X1Y1] = E[E[X V) | Xi]] = E[X1E[Y; | X1]] = E[0X{] =0
and var Yy = E[Y?] = E[E[Y? | X1]] = E[0?X? + 1] = 6? + 1, we then have

6

=g

Y.



Problem 5: Estimating Jointly Gaussian Random Variables [25]

Consider the Gaussian random vector

L =a(l] s )

(a) [4] Draw on the plane the random variables as vectors in the Hilbert space of random vari-
ables. Make sure to note the length of the vectors, as well as the angle that they form.

Y
1
/3
X
(b) [4] Find E[X | Y.
EX | V] = L[x [v] = YY)y Y

varyY 2

(c) [5] Create a random variable Z which is a function of X and Y such that
e 7 and Y are independent.

Z . . X| .
e The vector } has exactly the same information content as the vector [ } , in the sense

Y Y

that you can recover the latter vector from the former.

Show that your Z satisfies these properties.

Z:X—E[X\Y]:X—L[X]Y}:X—%.

By construction E[ZY] = 0, and because Z,Y are jointly Gaussian this implies that Z and Y
are independent.

In addition from the vector { } we can restore [ ] as follows

Y Y

- 410

10



(d) [6] Let U = Y. Find E[X | U].

Hint: This requires almost no computation, but make sure you justify your answer.

U and Y contain exactly the same information, since from U we can restore Y as U3,
because the function y ~ 3 is invertible. Hence

EX |U]=E[E[X | Y,U] | U]

=E[E[X | Y] | U]
Y
~&[5 | ]
U1/3
T2

(e) [6] Let V = Y?2. Find E[X | V].
Hint: This requires almost no computation as well, but first understand why it is different from

(©).

The difference from (a) is that now Y contains more information than V', since the function
y — y? is not invertible, so now we need to consider two cases.

EX |V]=E[EX |Y,V]|V]

[

E[E[X |Y]| V]
Y
=E[3 | V]
:EPWMYz@MY2m+EgWMY<ﬂMY<m

= VTV
=0.

—
[\]

W

(Note that the event {Y > 0} is independent of V.)
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Problem 6: Recursive Parameter Estimation [10]

Consider the stochastic dynamical system

Xn+1 = Xn7
Yn = Xn + an

for each n € N, where Xg, Wy, Wy, Wa, ... are i.i.d. N(0,1). At time n — 1, suppose that we
have computed the state estimate X,,_jj,—;. Then, at time n, we see the observation Y.

(a) [3] How do we compute the innovation at time n?

The innovation is

Yn _E[Yn | Yo,Yi,...,Yn,ﬂ - Yn _E{Xn"i'Wn | Y()aYVlv-"aYnfl]
=Y, —E[Xn1 | Yo.Y1,.... Y0 1] = Yo — X, 10t

(b) [7] We know that the Kalman filter equations recursively calculate Xn|n in “real time”.
Suppose we are willing to tolerate a delay of one sample in our estimate, i.e. we can wait until
after observing Y11 to estimate X, forn =1,2,3,.... Let X,,;, be the MMSE of X,, at time

n (ie. based on Y™ = Y, v1,...,Y,), and let O’i‘n be our estimation error at time n (i.e.

o2 =E[(X,— X’n‘n)Q]). Consider the update equation

nln

A~ ~

Xn\n—&—l = Xn\n + a(Yn+1 - Xn|n)

What is the optimal value of @ to minimize J?L'nﬂ =E[(X, — Xn|n+1)2]?

Observe that L[V, 11 | Y] = L[X,, + Wyp1 | Y] = LIX,, | YV] = X, s0 Vi1 — X,y i
the innovation. Write Y,, 1 —Xn|n = Xn+1+Whi —)A(n‘n =X, _ann + Wy41 where X, — An‘n
is orthogonal and independent of W, 1 since X;, — X,,),, only depends on (Xo, Wo, W1, ..., Wy,).
From the orthogonal update formula,

where E[X, (X, — X + Wat1)] = E[Xn(Xn — Xop)] = E[(Xn — Xp0)?] = 02, (recall that

\
Xpjn is orthogonal to X;, — X, by the property of the MMSE). Also,
var (X, — Xn|n + Wpt1) = var(X,, — Xnm) + var W41 = ai‘n +1

so using the formula for the LLSE,

12



Problem 7: HMM Estimation [15]

Consider a HMM (X, ),en with state space {0,1} and transitions P(0,1) = P(1,0) =p € [0, 1].
The hidden state is observed through a Binary Symmetric Channel (BSC) with error probability

1/3. Assume that the initial state is equally likely to be 0 or 1. The sequence of observations is
(1,1,1).

(a) [5] Suppose that it is known that p = 3/4. What is the most likely sequence of hidden

states?

It is (1,0,1). Let pr(x) be the largest probability of any sequence of states starting from
state « at time k. We solve for these quantities backwards as in the Viterbi algorithm.

p2(0)

Wl W —

3
[\
—~
—_
~
I

These probabilities are just the probabilities of the observations.

1 3 1 1
_ 1}.,:7 hi 1
p1(0) max{4pg(0),4 2(1) 3§ & ieved by 0 — 1,
(1) = {3 0), 2p )} 2 _ 1 chieved by 10
p1(1) = maxq ;p2(0), 7 p2 3 = g achieved by ,
(0) = {1 0,2 (1)} L1 chieved by 0= 1 -0
po(0) = maxq 71(0), 71 3 = 5y Achieved by :
3 1 2 1 .
po(1) —max{4p1(0) 1P (1)}§ =13 achieved by 1 — 0 — 1.

The most likely sequence of states is (1,0, 1) with probability 1/12.

(b) [5] Now, suppose that p is unknown We will try applying the hard EM algorithm to this
problem. We start by initializing p(©) = 3 /4. In the E step, we fill in the most likely values of
the hidden variables (Xo, X1, X2) given the observations, assuming that the parameter is pO).
Carry out the E step.

Using our answer from the previous part, we fill in (X, X1, X3) = (1,0, 1).

(c) [5] In the M step, we compute the MLE of p assuming the filled-in values for the hidden
variables computed in the E step. Carry out the M step.

For the hidden states (X, X1,X2) = (1,0,1), there are 2 switches of the hidden state, so
the likelihood of p is p?. Thus the MLE is p(!) = 1.
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