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• You have 10 minutes to read the exam and 150 minutes to complete this exam.

• The maximum you can score is 130, but 100 points is considered perfect.

• The exam is not open book, but you are allowed to consult the cheat sheet that we provide.
No calculators or phones. No form of collaboration between the students is allowed. If
you are caught cheating, you may fail the course and face disciplinary consequences.

• Show all work to get any partial credit.

• Take into account the points that may be earned for each problem when splitting your
time between the problems.

Problem points earned out of

Problem 1 25

Problem 2 20

Problem 3 20

Problem 4 15

Problem 5 25

Problem 6 10

Problem 7 15

Total 100 (+30)
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Problem 1: Answer these questions briefly but clearly. [25]

(a) Random Dog Walk [5]

A dog walks on the integers, possibly reversing direction at each step with probability p = 0.1.
Let X0 = 0. The first step is equally likely to be positive or negative. A typical walk might look
like this:

(x0, x1, x2, x3, . . .) = (0,−1,−2,−3,−4,−3,−2,−1, 0, 1, . . .).

True / False: The sequence of random variables (Xn)n≥0 is a Markov chain.

(b) MCMC [5]

Let {0, 1} be the state space of a Markov chain. Suppose that we try to simulate from the
distribution π =

[
1/2 1/2

]
via Metropolis-Hastings using the proposal distribution:

p(x, y) =


1

3
, y = x

2

3
, y = 1− x

, x = 0, 1.

In other words, at state x we propose state y with probability p(x, y). What should we set the
acceptance probabilities A(x, y) to be in order to make the algorithm correct (i.e., the stationary
distribution of the chain is π)?
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(c) Book Shop [5]

A small book shop has room for at most two customers. Potential customers arrive at a Poisson
rate of ten customers per hour; they enter if there is room and are turned away, never to
return, otherwise. The bookie serves the admitted customers in order, requiring an exponentially
distributed time of mean four minutes per customer.

Suppose there are two customers in the store. Find the expected amount of time until the store
is empty again.

(d) Random Graphs [5]

Let G be a random graph generated using the G(n, p) model. For what value of p is the expected
number of cliques of five vertices in G equal to 1? (A clique on n vertices is a subset of n vertices
such that for every pair of vertices in the clique, the edge between the vertices exists in the graph.)
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(e) Graphical MMSE [5]

Let (X,Y ) be a pair of random variables which are uniformly distributed over the region shown
in Figure 1.

x

y

1 2 3 4

1

2

R

Figure 1: The region R is enclosed by the curves: y = 0, y = 1, y = x2, y = (x− 2)2.

Find E[X | Y ].
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Problem 2: Waiting in Line for Infinity War (no spoilers) [20]

At 6:30 PM, there are 9 people waiting in line outside of the theater to watch Avengers: Infinity
War. People arrive and wait in line according to a Poisson process with rate 2 per minute.

(a) [5] Starting from 6:30 PM, the theater admits exactly one person every minute (i.e., at 6:31
PM, 6:32 PM, 6:33 PM, etc.). What is the expected number of people remaining in line the
instant after 6:40 PM?

(b) [5] Suppose we observe the time Y at which the third new person arrives in line. What is
the MLE estimate for the time X at which the fourth new person arrives in line? (Assume that
X and Y are measured in minutes since 6:30 PM.)
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(c) [5] Starting from 6:40 PM, the theater stops letting in more people. The people in line
become fed up: each person in line, independently, waits an Exponential(1) amount of time and
then leaves the line. (People are still arriving in line according to the Poisson process of rate
2 per minute. If a new person arrives, he or she also waits an Exponential(1) amount of time
before leaving the line.) After a long period of time, what is the average number of people in
line?

(d) [5] Meanwhile, inside the theater, the movie has already begun. Thanos appears on the
big screen according to a Poisson process of rate 1 per minute. On each of his appearances,
independently with probability 1/3 he makes the audience scream. An observer outside the
theater observes S, the number of times that the audience screams in the first 30 minutes.
What is the LLSE estimate of T , the number of times that Thanos appeared on the big screen
in the first 30 minutes, given S?

6



Problem 3: Hypothesis Testing [20]

(a) [10] We want to test two hypotheses; we have prior knowledge that X ∼ Bernoulli(2/3). In
both cases, our observation Y has the Laplace distribution, but with different mean and shape.
In particular

fY |X(y | 0) =
1

2
e−|y|, y ∈ R

fY |X(y | 1) =
1

4
e−
|y−2|

2 , y ∈ R.

Construct a decision rule r : R → {0, 1} that minimizes P(r(Y ) 6= X) = E[I{r(Y ) 6= X}] (use
the MAP rule).

(b) [10] We consider a standard hypothesis testing problem in which we have

Y | X = 0 =


a, w.p. 1

4

b, w.p. 1
4

c, w.p. 1
2 ,

and Y | X = 1 =


a, w.p. 1

2

b, w.p. 1
4

c, w.p. 1
4 .

Design a randomized decision rule r : {a, b, c} → {0, 1} in order to minimize P(r(Y ) = 0 | X = 1)
subject to P(r(Y ) = 1 | X = 0) ≤ 0.3.
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Problem 4: Estimating the Slope of a Line [15]

Suppose (X1, Y1), . . . , (Xn, Yn) are i.i.d., where X1 ∼ N (0, 1) and Y1 | X1 = x ∼ N (xθ, 1) where
θ ∈ R is unknown.

(a) [8] Compute the MLE of θ given the observations (X1, Y1), . . . , (Xn, Yn).

(b) [7] Compute E[X1 | Y1].
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Problem 5: Estimating Jointly Gaussian Random Variables [25]

Consider the Gaussian random vector[
X
Y

]
∼ N2

([
0
0

]
,

[
1 0.5

0.5 1

])
.

(a) [4] Draw on the plane the random variables as vectors in the Hilbert space of random
variables. Make sure to note the length of the vectors, as well as the angle that they form.

(b) [4] Find E[X | Y ].

(c) [5] Create a random variable Z which is a function of X and Y such that

• Z and Y are independent.

• The vector

[
Z
Y

]
has exactly the same information content as the vector

[
X
Y

]
, in the sense

that you can recover the latter vector from the former.

Show that your Z satisfies these properties.
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(d) [6] Let U = Y 3. Find E[X | U ].

Hint: This requires almost no computation, but make sure you justify your answer.

(e) [6] Let V = Y 2. Find E[X | V ].

Hint: This requires almost no computation as well, but first understand why it is different from
(c).
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Problem 6: Recursive Parameter Estimation [10]

Consider the stochastic dynamical system

Xn+1 = Xn,

Yn = Xn +Wn,

for each n ∈ N, where X0,W0,W1,W2, . . . are i.i.d. N (0, 1). At time n − 1, suppose that we
have computed the state estimate X̂n−1|n−1. Then, at time n, we see the observation Yn.

(a) [3] How do we compute the innovation at time n?

(b) [7] We know that the Kalman filter equations recursively calculate X̂n|n in “real time”.
Suppose we are willing to tolerate a delay of one sample in our estimate, i.e. we can wait until
after observing Yn+1 to estimate Xn for n = 1, 2, 3, . . . . Let X̂n|n be the MMSE of Xn at time

n (i.e. based on Y (n) = Y0, Y1, . . . , Yn), and let σ2n|n be our estimation error at time n (i.e.

σ2n|n = E[(Xn − X̂n|n)2]). Consider the update equation

X̂n|n+1 = X̂n|n + a(Yn+1 − X̂n|n).

What is the optimal value of a to minimize σ2n|n+1 = E[(Xn − X̂n|n+1)
2]?
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Problem 7: HMM Estimation [15]

Consider a HMM (Xn)n∈N with state space {0, 1} and transitions P (0, 1) = P (1, 0) = p ∈ [0, 1].
The hidden state is observed through a Binary Symmetric Channel (BSC) with error probability
1/3. Assume that the initial state is equally likely to be 0 or 1. The sequence of observations is
(1, 1, 1).

(a) [5] Suppose that it is known that p = 3/4. What is the most likely sequence of hidden
states?

(b) [5] Now, suppose that p is unknown. We will try applying the hard EM algorithm to this
problem. We start by initializing p̂(0) = 3/4. In the E step, we fill in the most likely values of
the hidden variables (X0, X1, X2) given the observations, assuming that the parameter is p̂(0).
Carry out the E step.

(c) [5] In the M step, we compute the MLE of p assuming the filled-in values for the hidden
variables computed in the E step. Carry out the M step.
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