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EECS 16A Designing Information Devices and Systems I
Fall 2020 Midterm 1

Midterm 1 Solution

1. HONOR CODE
If you have not already done so, please copy the following statements into the box provided for the honor
code on your answer sheet, and sign your name.

I will respect my classmates and the integrity of this exam by following this honor code. I affirm:

• I have read the instructions for this exam. I understand them and will follow them.

• All of the work submitted here is my original work.

• I did not reference any sources other than my one reference cheat sheet.

• I did not collaborate with any other human being on this exam.

2. (a) Tell us about something you did in the last year that you are proud of. All answers will be awarded
full credit; you can be brief. (2 Points)

(b) Name someone that inspires you. All answers will be awarded full credit; you can be brief. (2 Points)
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3. Sailing for climate change (22 points)

You are a member of Greta Thunberg’s crew that embarks on a new transatlantic boat journey, advocating
for climate change awareness and environmentally friendly travel.

(a) (2 points) In the environmentally friendly mode, the ship travels using only the wind and sail; as a
result you have to move in direction of the wind.

In this mode, the next location of the ship is given by ~̀next = A ·~̀curr, where ~̀curr =

2
5
0

 is the current

location of the ship. A is given as:

A =

1 2 0
3 6 0
0 0 0

 .
Find your next location vector ~̀next after you apply the steering matrix A once to ~̀curr.
Solution:
Your next location can be calculated by multiplying the steering matrix with your current location so:

~̀next = A ·~̀curr =

1 2 0
3 6 0
0 0 0

2
5
0

=

1 ·2+2 ·5+0 ·0
3 ·2+6 ·5+0 ·0
0 ·0+0 ·0+0 ·0

=

12
36
0



(b) (2 points) What is the dimension of the columnspace of A? Explain your answer and/or show
your work.

A =

1 2 0
3 6 0
0 0 0

 .
Solution: Observe that the columns of the steering matrix A are linearly dependent since col2 =

2× col1. This means that the column space is equal to: C(A) = span
{1

3
0

}. We can disregard the

last column as it is a column of zeros.
Therefore, the column space of A has dimension 1, and forms a line.

(c) (6 points) A plane is monitoring the journey from a high altitude and wants to come closer to Greta’s
ship at a certain meeting point, ~̀meet .
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The plane’s current location is described by ~̀plane =

 0
20
100

, and the goal is to hover at the meeting

point described by ~̀meet =

20
20
50

. You have been asked to design a steering matrix B for the plane so

that
~̀meet = B ·~̀plane.

Some of the entries of the matrix B are given for you below; however, you must find the elements
p,q and r. Please draw a box around your answers for p,q and r.

B =

10 p 1
20 6 q
7 r −1

 .
Solution:
The system of equations we need to solve is:

B ·~̀plane = ~̀meet10 p 1
20 6 q
7 r −1

 0
20

100

=

20
20
50


The system of equations we can write from the above matrix formulation is:

10 ·0+ p ·20+1 ·100 = 20
20 ·0+6 ·20+q ·100 = 20
7 ·0+ r ·20+(−1) ·100 = 50

Solving this system, we arrive at the following solution: p =−4, q =−1, r = 7.5.

(d) (4 points) For this subpart and the following subparts, you can assume that your ship travels only
in 2D.

Your current location is given by ~̀curr =

[
2
3

]
. Steering matrix C was multiplied once with your previ-

ous location vector, ~̀prev, to bring you to ~̀curr, so you know ~̀curr = C ·~̀prev. The matrix C is:

C =

[
1 1
3 6

]
.

Find ~̀prev, your previous location vector.
Solution:
There are two acceptable solutions for this answer: 1. to calculate the inverse first, and then multiply
the inverse matrix with the current state vector; or 2. to formulate the problem as C ·~̀prev = ~̀curr and
row reduce to calculate ~̀prev.
For the first approach, we need to calculate the inverse matrix as follows:

~̀prev = C−1~̀curr.
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Using Gaussian Elimination we can get:

[
1 1 1 0
3 6 0 1

]
→
[

1 1 1 0
0 3 −3 1

]
R2← R2−3R1

→
[

1 1 1 0
0 1 −1 1

3

]
R2←

1
3

R2

→
[

1 0 2 −1
3

0 1 −1 1
3

]
R1← R1−R2

So we will have that:

~̀prev =

[
2 −1

3
−1 1

3

][
2
3

]
=

[
3
−1

]
In the second approach, we augment our matrix accordingly and row reduce:[

1 1 2
3 6 3

]
→
[

1 1 2
0 3 −3

]
R2← R2−3R1

→
[

1 1 2
0 1 −1

]
R2←

1
3

R2

→
[

1 0 3
0 1 −1

]
R1← R1−R2

Again, we see that the previous location vector is:

~̀prev =

[
3
−1

]

(e) (4 points) On the distant horizon, you see three other ships approaching Greta’s ship. The current

locations of the three ships are given by the column vectors:
[

5
9

]
,
[

4
12

]
,
[

3
4

]
. You stack the ships’

locations together to make the matrix D =

[
5 4 3
9 12 4

]
.

The winds driving these ships transform each ship location by the matrix E =

[
a b
c d

]
.

Instead of computing their final locations one-by-one, you want one matrix that gives the locations of
the three ships, where the two rows of this matrix will contain the x- and y-coordinates of the ships,
respectively.
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Set this problem up as a matrix-matrix multiplication and find the matrix representing the final
locations of all three ships.
Solution:
The 2×3 matrix corresponding to the ships’ current location vectors is constructed as a matrix D:

D =

[
5 4 3
9 12 4

]
Note that students may put the column vectors together in varying order; as long as the order matches
the ordering of the final location vectors in the answer, full credit should be awarded.
The matrix-matrix product is calculated as follows:

E ·D =

[
a b
c d

]
·
[

5 4 3
9 12 4

]
=

[
5a+9b 4a+12b 3a+4b
5c+9d 4c+12d 3c+4d

]

(f) (4 points) Your current location vector is now given as ~̀curr =

[
5
0

]
. Your would like to steer Greta’s

ship to ~̀ f inal =

[
0
−10

]
. You notice that the ship has several built-in 2×2 steering matrices which you

can apply in any order to your current location vector:

• Tθ , which rotates your current location vector by 90° counterclockwise;
• T2, which multiplies your current location vector by a factor of 2;
• Tx, which reflects your current location vector across the x-axis;
• Ty, which reflects your current location vector across the y-axis.

You would like to only use these built-in steering matrices to direct Greta’s ship to its final goal.
Which of the following options would successfully get you from ~̀curr to ~̀ f inal? Only one option is
correct.
No partial credit will be awarded if any incorrect options are selected. You do not need to show any
work for this problem.

(i) ~̀ f inal = Tθ T2Tx~̀curr

(ii) ~̀ f inal = TxT2Tθ
~̀curr

(iii) ~̀ f inal = TyT2Tx~̀curr

(iv) ~̀ f inal = TyTxT2~̀curr

Solution:
The only correct choice among the options provided is option (ii). Applying Tθ brings ~̀curr to [0 5]>;
applying T2 next brings us to [0 10]>. Finally, applying Tx last brings us to ~̀ f inal = [0 −10]>.

Option (i) transforms ~̀curr to [5 0]> by Tx; transforms to [10 0]> by T2, then to ~̀ f inal = [0 10]>

by Tθ .
Option (iii) transforms ~̀curr to [5 0]> by Tx; transforms to [10 0]> by T2, then to ~̀ f inal = [−10 0]>

by Ty.
Option (iv) transforms ~̀curr to [10 0]> by T2; transforms to [10 0]> by Tx, then to ~̀ f inal = [−10 0]>

by Ty.
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4. Mixing Paints (21 points)
Over quarantine, you’ve really gotten into painting, but you are running low on paints.You would like to mix
the paints you have to make different colors.

Notation: Every color can be represented as a length-3 vector,~c =

cr

cy

cb

, where cr, cy, and cb represent the

number of bottles of red, yellow, and blue paint, respectively, to make the color.

(a) (5 points) You want to make the color brown, ~b =

1
1
1

, using a linear combination of turquoise,

magenta, and peach paints (the only ones you have left). We are given the following information about
paint compositions:

• 1 bottle of turquoise is made by combining 0 bottles red, 0.4 bottles yellow, and 0.6 bottles blue.
• 1 bottle of magenta is made by combining 0.5 bottles red, 0 bottles yellow, and 0.5 bottles blue.
• 1 bottle of peach is made by combining 0.5 bottles red, 0.4 bottles yellow, and 0.1 bottles blue.

You would like to find the number of bottles of turquoise (xt), magenta (xm), and peach (xp) to
mix to make brown. Formulate this problem as a matrix-vector equation. You do not need to
solve the equation.
Solution:

A~x =~b

 0 0.5 0.5
0.4 0 0.4
0.6 0.5 0.1

 xt

xm

xp

=

1
1
1



(b) (5 points) Your friend wants to make the color brown but has a different set of colors. She also sets up
a system of equations to make brown and ends up with A~x =~b where

A =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

 , ~b =

1
1
1

 .
Use Gaussian Elimination to solve for~x, which represents the mixture of paints your friend must
combine to make brown. Show your work.
Solution: Our system of equations is given by: 0 0.5 0.5

0.5 0 0.5
0.5 0.5 0

~x =
1

1
1


EECS 16A, Fall 2020, Midterm 1 6
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which we can express in augmented matrix form as: 0 0.5 0.5 1
0.5 0 0.5 1
0.5 0.5 0 1


For simplicity, we multiply all rows by 2 to remove the fractions and then proceed with Gaussian
Elimination:

 0 1 1 2
1 0 1 2
1 1 0 2


→

 1 0 1 2
0 1 1 2
1 1 0 2

swap R1,R2

→

 1 0 1 2
0 1 1 2
0 1 −1 0

R3← R3−R1

→

 1 0 1 2
0 1 1 2
0 0 −2 −2

R3← R3−R2

→

 1 0 1 2
0 1 1 2
0 0 1 1

R3←−
1
2

R3

→

 1 0 0 1
0 1 0 1
0 0 1 1

R1← R1−R3;R2← R2−R3

So we arrive at the solution~x =

1
1
1

 .

(c) (6 points) You now want to make lots of colors. Instead of solving the system A~x = ~c every time
we want to make a new color ~c, you want to find the inverse matrix A−1. For this subpart, use the
following matrix:

A =

1 1 1
0 1 0
1 0 2

 .
Use Gaussian Elimination to determine if A−1 exists. If A−1 exists, give its value.
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Solution: We start with the following augmented matrix.

[
A I

]
=

 1 1 1 1 0 0
0 1 0 0 1 0
1 0 2 0 0 1


→

 1 1 1 1 0 0
0 1 0 0 1 0
0 −1 1 −1 0 1

R3← R3−R1

→

 1 1 1 1 0 0
0 1 0 0 1 0
0 0 1 −1 1 1

R3← R3 +R2

→

 1 1 0 2 −1 −1
0 1 0 0 1 0
0 0 1 −1 1 1

R1← R1−R3

→

 1 0 0 2 −2 −1
0 1 0 0 1 0
0 0 1 −1 1 1

R1← R1−R2

[
I A−1 ]=

 1 0 0 2 −2 −1
0 1 0 0 1 0
0 0 1 −1 1 1


Thus the inverse matrix A−1 exists and is given by:

A−1 =

 2 −2 −1
0 1 0
−1 1 1



(d) (5 points) We would like to determine what colors we can make just given three other colors (purple,
orange, gray). These are represented by a matrix D ∈ R3×3, which is invertible, but is otherwise
unknown to you. You cannot mix together negative amounts of paint.
Consider the set of all colors

S=

~c ∈ R3 | D~x =~c, ~x =

x1
x2
x3

 , x1 ≥ 0,x2 ≥ 0,x3 ≥ 0

 .

that we can get from mixing together non-negative quantities of the three colors. Is S a vector sub-
space of R3? Justify your answer.
Solution:
Brief Argument
We know that for~c1 ∈ S, there exists some~x1 such that~c1 = D~x1.
Let’s take a second vector~c2 =−~c1. The question we want to answer: for any~c1 ∈ S, is~c2 ∈ S also?
Assume for now that it is (we will show this assumption is a contradiction.)
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Since we’re assuming~c2 ∈ S, we can write:

~c2 = D~x2

−~c1 = D~x2

~c1 =−D~x2

Note that because D is invertible, there is only one unique ~x2 that satisfies this. Therefore, we can
rewrite the left- and right-hand sides as:

D~x1 = D(−~x2)

i.e.

~x2 =−~x1

is the only solution to −~c1 = D~x2. Note that D being invertible is crucial – otherwise,~x2 =−~x1 would
not be guaranteed to be the only solution for any arbitrary~c1.

Suppose we have chosen a non-zero ~c1 such that ~x1 has elements x1,x2,x3 ≥ 0 with at least one of
x1,x2,x3 being strictly positive. Then ~x2 = −~x1 has at least one element that is strictly negative. But
our set requires all~x vectors to only have non-negative elements. Therefore, we cannot generate −~c1
using~x2 =−~x1. By the invertibility of D, there are no other possible~x vectors to generate −~c1 for any
arbitrary~c1 ∈ S.

This exposes a contradiction in our assumption: ~c2 =−~c1 /∈ S for any arbitrary~c1 ∈ S.

For example, if we multiply a non-zero vector~c that is in our set S by −1, the resulting vector will not
be in S. This means S is not closed under scalar multiplication, and therefore it is not a subspace.

Detailed Argument
We determine if S is a vector subspace by checking the properties it must satisfy:

i. ~0 ∈ S
ii. ~c1,~c2 ∈ S⇒~c1 +~c2 ∈ S

iii. α ∈ R,~c ∈ S⇒ α~c ∈ S
The key property that is violated is the third one, i.e. the subspace must be closed under scalar multi-
plication.
Let’s pick a non-zero color vector ~c ∈ S,~c 6=~0. It was produced by a unique combination of purple,
orange, and gray; i.e. there exists a unique solution~x ∈R3 to the system D~x =~c such that x1,x2,x3 are
non-negative and at least one of x1,x2,x3 is strictly positive.
The uniqueness of this solution can be shown due to the fact that D is invertible, and we note that

~x = D−1~c.

Now, let’s try multiplying~c by a scalar α ∈ R and check if the resulting vector α~C ∈ S.
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If α~c∈ S, that would imply that there exists a unique~z∈R3 to the system D~z=α~c such that z1,z2,z3≥
0.

D~z = α~c

⇒~z = αD−1~c

⇒~z = α~x

Elementwise, the final statement implies that:

z1 = αx1

z2 = αx2

z3 = αx3

Without loss of generality, let us assume that x1 > 0. Then choosing α =−1 would indicate that z1 < 0,
which is a contradiction to~z being non-negative.
To summarize, we have shown the set S is not closed under scalar multiplication and therefore it is not
a subspace.
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5. Basis and Linear Independence (18 points)
Let V be a subspace of R4 defined as

V=

~x ∈ R4
∣∣∣∣ ~x =


α

β

α +β

α−β

 , where α,β ∈ R

 .

(a) (4 points) Find a basis for V and determine the dimension of V. Show your work.
Solution:
~x can be written as:

~x = α


1
0
1
1

+β


0
1
1
−1

 .
Therefore, a basis for V is: 


1
0
1
1

 ,


0
1
1
−1


 .

The dimension of V is 2.

(b) (4 points) Given ~v1 =

1
2
2

 and ~v2 =

2
5
3

, determine if the set {~v1,~v2} is linearly independent, using

Gaussian Elimination.
Solution: We see that ~v2 is not a scaled version of ~v1, so {~v1,~v2} is linearly independent.
We show this explicitly by finding α1,α2 ∈ R such that α1~v1 +α2~v2 =~0. If there exists a unique
solution, α1 = α2 = 0, then {~v1,~v2} is linearly independent.
We set up the system of equations and use Gaussian Elimination.1 2

2 5
2 3

[α1
α2

]
=

0
0
0


 1 2 0

2 5 0
2 3 0


→

 1 2 0
0 1 0
0 −1 0

R2← R2−2R1;R3← R3−2R1

→

 1 0 0
0 1 0
0 0 0

R1← R1−2R2;R3← R3 +R2
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Thus there is a unique solution α1 = α2 = 0 and {~v1,~v2} is a linearly independent set.

(c) (10 points) Prove the following statement: If

{~v1,~v2,~v3, · · · ,~vn}

is a linearly independent set, then

{~v1,~v2−~v1,~v3−~v2−~v1, · · · ,~vn−~vn−1−·· ·−~v2−~v1}

is a linearly independent set.
Solution:
Proof Setup:

We consider the following vectors ~α =


α1
α2
...

αn

 ∈ Rn, ~β =


β1
β2
...

βn

 ∈ Rn in the proof to follow.

We know that {~v1,~v2,~v3, · · · ,~vn} is a linearly independent set, so we can write:

α1~v1 +α2~v2 +α3~v3 + · · ·+αn~vn = 0 ⇒ α1,α2,α3, · · · ,αn = 0 (1)

We want to prove that:

β1~v1+β2(~v2−~v1)+β3(~v3−~v2−~v1)+ · · ·+βn(~vn−~vn−1−·· ·−~v2−~v1) = 0 ⇒ β1,β2,β3, · · · ,βn = 0
(2)

Proof by Construction:
By rearranging the left-hand side of Equation (2), we get

(β1−β2−β3−·· ·−βn)~v1 +(β2−β3−·· ·−βn)~v2 +(β3−β4−·· ·−βn)~v3 + · · ·+βn~vn = 0 (3)

We now recall our given fact that {~v1,~v2,~v3, · · · ,~vn} is a linearly independent set and compare the
left-hand side of Equation 1 to Equation 3.

αn = βn = 0

αn−1 = βn−1−βn = 0
...

α2 = β2−β3−·· ·−βn = 0

α1 = β1−β2−·· ·−βn = 0

Solving this system of equations with back-substitution, starting with βn and working towards β1, we
get: β1 = β2 = β3 = · · ·= βn = 0
So we have thus shown that:

β1~v1+β2(~v2−~v1)+β3(~v3−~v2−~v1)+ · · ·+βn(~vn−~vn−1−·· ·−~v2−~v1) = 0 ⇒ β1,β2,β3, · · · ,βn = 0

Therefore, {~v1,~v2−~v1,~v3−~v2−~v1, · · · ,~vn−~vn−1−·· ·−~v2−~v1} is a linearly independent set.

Proof by Contradiction:
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Suppose {~v1,~v2−~v1,~v3−~v2−~v1, · · · ,~vn−~vn−1− ·· ·−~v2−~v1} were not a linearly independent set.
That would suggest there exists a vector ~β ∈ Rn such that:

β1~v1 +β2(~v2−~v1)+β3(~v3−~v2−~v1)+ · · ·+βn(~vn−~vn−1−·· ·−~v2−~v1) = 0
~β 6=~0

As with the proof by construction, we can rearrange the left-hand side of Equation 2 to get Equation 3.
Applying the fact that {~v1,~v2,~v3, · · · ,~vn} is a linearly independent set, then we arrive at the unique
solution β1 = β2 = β3 = · · · = βn = 0 which contradicts our assumption that there exists a solution
~β 6=~0.
Therefore, {~v1,~v2−~v1,~v3−~v2−~v1, · · · ,~vn−~vn−1−·· ·−~v2−~v1} is a linearly independent set.
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6. GPT-3 wrote this question... or did it? (33 points)

Your friend, a UC Berkeley undergraduate, is working on a project to use OpenAI’s GPT-3 language gener-
ation algorithm to write blog posts that mimic human writers. After one of their first posts trends on Hacker
News, you apply for access to GPT-3 so you can examine how it works for yourself.

The algorithm works by iterating. The blog post at time step n is represented by a vector~x[n]. We will define
the entries of the vector later. The GPT-3 algorithm is represented by the transition matrix A. So the blog
post at time n+1 is given by:

~x[n+1] = A ·~x[n].

(a) (4 points) You find that the transition matrix A of one version of the algorithm is described by the flow
diagram in Figure 6.1.

noun

verb

article

adjective

0.2

0.5

0.3

0.7

0.3

0.9

0.11

Figure 6.1: A flow diagram to represent how model A transforms state vector~x[n].

In this case, each entry of~x[n] describes the number of nouns, verbs, adjectives and articles in the blog
post at time n. The structure of the state vector~x[n] for n≥ 0 is:

~x[n] =


xnoun[n]
xverb[n]

xadjective[n]
xarticle[n]

 . (4)

What is the A matrix based on the flow diagram in Figure 6.1?
Solution:
Recall that in a transition matrix A, every element A[i, j] at row i and column j should represent the
flow from state j to state i in a timestep i.e. the edge value from state j to state i. In this case, from the
state vector structure, noun is state 1, verb is state 2, adjective is state 3, and article is state 4.
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We write the state equations as follows, keeping in mind that x1, x2, x3, and x4 indicate the state
corresponding to the number of nouns, verbs, adjectives, and articles, respectively:

x1[n+1] = 0.5x1[n]+0.7x2[n]+ x3[n]

x2[n+1] = 0.2x1[n]+0.9x4[n]

x3[n+1] = 0.3x2[n]+0.1x4[n]

x4[n+1] = 0.3x1[n]

Filling in the elements of A accordingly gives the following result for the transition matrix of the
system above:

A =


0.5 0.7 1 0
0.2 0 0 0.9
0 0.3 0 0.1

0.3 0 0 0

.
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(b) (4 points) Now, you are interested in testing out a less complex model that operates on just three parts
of speech: nouns, verbs, and adjectives. In this case, the structure of the state vector ~x[n] at each
iteration n is:

~x[n] =

 xnoun[n]
xverb[n]

xadjective[n]

.

Your starting article,~x[0], consists of 4000 nouns, 4000 verbs, and 4000 adjectives, i.e,~x[0] =

4000
4000
4000

.

You want to try out a different 3×3 transition matrix B to see what happens to your starting article.

B =

0.25 0.25 0
0.25 0 0.25

0 0.25 0.25

.

noun

verb

adjective

0.25

0.25

0.25 0.25

0.25

0.25

Figure 6.2: A flow diagram to represent how model B transforms state vector~x[n].

Compute the next state vector, ~x[1], if we apply matrix B once to the starting state vector, ~x[0].
Show your work.
Solution:
Given the information in the problem statement and the model above, we know the following:

B =

0.25 0.25 0
0.25 0 0.25

0 0.25 0.25

,~x[0] =

4000
4000
4000


Let’s apply B to~x[0] once, and see what we get:

~x[1] = B ·~x[0] =

0.25 0.25 0
0.25 0 0.25

0 0.25 0.25

4000
4000
4000

=

0.25 ·4000+0.25 ·4000+0
0.25 ·4000+0+0.25 ·4000
0+0.25 ·4000+0.25 ·4000

=

2000
2000
2000


Therefore, the resulting article has 2000 nouns, 2000 verbs, and 2000 adjectives.

(c) (2 points) Is the transition matrix B representative of a conservative system? Why or why not?

B =

0.25 0.25 0
0.25 0 0.25

0 0.25 0.25


EECS 16A, Fall 2020, Midterm 1 16
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Solution:
The transition matrix B is not representative of a conservative system. If we sum up the values in
any one column of the transition matrix, we notice that the values sum to 0.5, not 1, indicating that
generally, words are exiting this system.

(d) (4 points) Now, you are considering testing out an unknown 3× 3 model matrix C. You have limited
information about C: you know that C has three eigenvectors ~v1, ~v2, and ~v3, and three corresponding
eigenvalues λ1, λ2 and λ3.
You are also told that you can rewrite ~x[0], the starting state vector, as a linear combination of the
eigenvectors of C:

~x[0] =−3000~v1 +3000~v2 +7000~v3.

You are ultimately interested in observing how C modifies the state vector,~x[n], at every timestep n.
Write an expression for ~x[n] in terms of n, the eigenvalues of C, and the eigenvectors of C. You
do not have to show a lot of work for this problem. Your answer may also include constants. Note:
Your equation should not include any terms involving previous states (in other words, do not use terms
such as n−1, n−2, ...).
Solution:
According to the GPT-3 algorithm, after n iterations, the start vector~x[0] will have been left-multiplied
by transition matrix C n times, giving the following explicit relationship between~x[0] and~x[n]:

~x[n] = Cn~x[0]

Using the fact that C~xi = λi~xi =⇒ Cn~xi = λ n
i ~xi:

~x[n] = Cn~x[0]

= Cn(−3000~v1 +3000~v2 +7000~v3)

=−3000λ
n
1 ~v1 +3000λ

n
2 ~v2 +7000λ

n
3 ~v3

The state vector after the nth iteration of GPT-3 –~x[n] – in terms of n, C’s eigenvalues, C’s eigenvalues,
and constants only is~x[n] =−3000λ n

1 ~v1 +3000λ n
2 ~v2 +7000λ n

3 ~v3.

(e) (6 points) Suppose you are now working with a 7000-word blog post consisting entirely of nouns, i.e.,

~x[0] =

 xnoun[0]
xverb[0]

xadjective[0]

=

7000
0
0

.

You’d like to add some variety to the parts of speech used in your article and introduce some verbs and
adjectives, too. Someone on the internet suggests using the following matrix D:

D =

0.3 0 0.4
0.4 1 0.2
0.3 0 0.4

.

The eigenvalues of D are λ1 = 0, λ2 = 0.7, and λ3 = 1, with corresponding eigenvectors

~v1 =

−4
3

1
3
1

,~v2 =

 1
−2
1

, and~v3 =

0
1
0

.
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Recall that~x[n+1] = D ·~x[n].
What is the steady-state of the system, i.e., limn→∞~x[n]?
Hint: You do NOT have to express~x[0] in terms of~v1,~v2,~v3 to solve this part. Also, think about if the
system is conservative.
Solution:
We will offer three varying solutions to get to the same final answer of limn→∞~x[n] = [0 7000 0]>,
i.e, 0 nouns, 7000 verbs, 0 adjectives.

i. A shortcut to finding the steady state based on information given in previous parts is that the
steady state will be the eigenvector corresponding to the eigenvalue of 1 for transition matrix C.
In this case, this is: 0

1
0


When using this method, the eigenvector will have to be scaled according to the number of words
in the article – 7000 – so the final word counts in the post after running GPT-3 would be: 0

7000
0


Note that for this solution, we did not have to use additional information associated with the
other two eigenvectors or eigenvalues of D; it was sufficent to simply look at the eigenvector
corresponding to λ3 = 1 and pair it with the fact that matrix D is conservative, meaning that the
total number of words in the system should be exactly the same when comparing the steady state
to the start state.

ii. A more rigorous, less intuitive method of computing the steady state vector would be to first
decompose the starting state vector into a linear combination of the eigenvectors of matrix D.
This can be accomplished using our tried-and-true Gaussian Elimination technique, or by writing
a system of equations and solving for the unknowns. Here, we show the computation of the
weights by solving the system of equations below, where x1, x2, and x3 are the weights on~v1,~v2,
and~v3, respectively. 

−4
3 · x1 + x2 = 7000 (1)

1
3 · x1−2x2 + x3 = 0 (2)
x1 + x2 = 0 (3)

Substituting in x1 =−x2 by using equation (3) into equation (1), we obtain 7
3 x2 = 7000 =⇒ x2 =

3000.
Substituting x2 = 3000 back into equation (3), we obtain x1 =−3000.
Finally substituting x1 =−3000 and x2 = 3000 into equation (2), we obtain−1000−6000+x3 =
0 =⇒ x3 = 7000.
Hence, the initial state expressed as a linear combination of the eigenvectors of matrix D is:

~x[0] =−3000~v1 +3000~v2 +7000~v3

Notice that this is the same linear combination as given in part (d). Nifty!
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Next, we represent~x[n] at an arbitrary timestep n as:

~x[n] = Dn ·~x[0]
= Dn(−3000~v1 +3000~v2 +7000~v3)

=−3000λ
n
1~v1 +3000λ

n
2~v2 +7000λ

n
3~v3

=−3000(0)~v1 +3000(0.7)n~v2 +7000(1)n~v3

Taking the limit of this expression for~x[n] as n→ ∞, we see that:

lim
n→∞

~x[n] = lim
n→∞

[−3000(0)~v1 +3000(0.7)n~v2 +7000(1)n~v3]

= 7000~v3.

The component corresponding to λ1 = 0 vanishes immediately, whereas the component corre-
sponding to λ2 = 0.7 tends to 0 as n→ ∞. This leaves us with a solitary contribution from the
term corresponding to~v3. Therefore, the steady-state vector is:

lim
n→∞

~x[n] = 7000~v3

=

 0
7000

0

 .
iii. We recall that at steady state, ~x[n+ 1] =~x[n] or D ·~x[n] =~x[n]. Substituting for D and general

element placeholders for~x[n] gives the following:
D ·~x[n] =~x[n]0.3 0 0.4

0.4 1 0.2
0.3 0 0.4

 xnoun[n]
xverb[n]

xadjective[n]

=

 xnoun[n]
xverb[n]

xadjective[n]


 0.3xnoun[n]+0.4xadjective[n]

0.4xnoun[n]+ xverb[n]+0.2xadjective[n]
0.3xnoun[n]+0.4xadjective[n]

=

 xnoun[n]
xverb[n]

xadjective[n]


The above may be written as a system of equations with unknowns xnoun[n], xverb[n], xadjective[n].

0.3xnoun[n]+0.4xadjective[n] = xnoun[n]→ 0.4xadjective[n] = 0.7xnoun[n] ... (1)
0.4xnoun[n]+ xverb[n]+0.2xadjective[n] = xverb[n]→ 0.4xnoun[n] =−0.2xadjective[n] ... (2)

0.3xnoun[n]+0.4xadjective[n] = xadjective[n]
The relationships in (1) and (2) will only be satisfied if xnoun[n] and xadjective[n] are both equal to 0.
Again, we utilize the fact that D represents a conservative system – nothing is entering or leaving
between iterations because the sum of the elements in each column of the transition matrix is 1.
Because xnoun[n] = xadjective[n] = 0, xverb[n] must be 7000 since we began with 7000 total words
(which were nouns).

(f) (5 points) You are still considering new ways to make your starting 7000-word blog post consisting

of all nouns (i.e, ~x[0] =

7000
0
0

) more interesting. Your EECS16A TA, Lily, suggests the following

transition matrix E, and tells you its eigenvalues are λ1 = 0.4, λ2 = 0.1, and λ3 = 1.
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E =

0.3 0.1 0.2
0.4 0.8 0.4
0.3 0.1 0.4


Compute the eigenspace corresponding to the eigenvalue λ2 = 0.1 for matrix E. Show your work.
Solution:
We are given in the problem statement that the eigenvalue in question is λ2 = 0.1. Therefore, this
question is equivalent to asking to solve for the nullspace of (E−λ2I):

E~v2 = λ2~v2

(E−λ2I)~v2 =~0

Setting up for Gaussian Elimination: 0.2 0.1 0.2 0
0.4 0.7 0.4 0
0.3 0.1 0.3 0


→

 1 1/2 1 0
1 7/4 1 0
1 1/3 1 0

 normalizing all rows

→

 1 1/2 1 0
0 5/4 0 0
0 −1/6 0 0

 R2← R2−R1; R3← R3−R1

→

 1 1/2 1 0
0 1 0 0
0 0 0 0

 R3← R3 +
( 2

15
R2

)
; R2←

(4
5

)
R2

→

 1 0 1 0
0 1 0 0
0 0 0 0

 R1← R1−
(1

2

)
R2

At this point, we can see that x3 is our one free variable. Parameterizing x3 with α , we calculate the
eigenvector/eigenspace for λ2 = 0.1 as:

~v2 = α

−1
0
1

 , α ∈ R

(g) (8 points) You are finally considering a model F matrix:

F =

 f11 f12 f13
f21 f22 f23
f31 f32 f33

 .
The entries of the columns of this matrix add up to 2, i.e.:

f11 + f21 + f31 =2, f12 + f22 + f32 =2, f13 + f23 + f33 =2.
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What does this transition matrix do to the total number of words (i.e. verbs + nouns + adjectives)
in each iteration of the blog post? Provide a rigorous proof of your answer. Recall that~x[n+1] =
F ·~x[n], and that

~x[n] =

 xnoun[n]
xverb[n]

xadjective[n]

 .
Solution:
We can begin by seeing what happens to the current state vector ~x[n] at any timestep n upon one
application of the F matrix as given in the problem statement.

~x[n+1] = F ·~x[n]

=

 f11 f12 f13
f21 f22 f23
f31 f32 f33

 ·
 xnoun[n]

xverb[n]
xadjective[n]


=

 f11 · xnoun[n]+ f12 · xverb[n]+ f13 · xadjective[n]
f21 · xnoun[n]+ f22 · xverb[n]+ f23 · xadjective[n]
f31 · xnoun[n]+ f32 · xverb[n]+ f33 · xadjective[n]


Note that the expression for~x[n+1] is valid for the current state vector at any timestep n+1.
Next, we consider the total number of words in the article at any timestep n+1. We can find the total
number of words simply by summing up all of the entries of the~x[n+1] state vector which was found
above:

total # of words at n+1 = ( f11 · xnoun[n]+ f12 · xverb[n]+ f13 · xadjective[n])+

( f21 · xnoun[n]+ f22 · xverb[n]+ f23 · xadjective[n])+

( f31 · xnoun[n]+ f32 · xverb[n]+ f33 · xadjective[n]).

If we regroup terms to combine all of the xnoun[n], xverb[n], and xadjective[n] respectively, we get:

total # of words at n+1 = ( f11 + f21 + f31) · xnoun[n]+

( f12 + f22 + f32) · xverb[n]+

( f13 + f23 + f33) · xadjective[n].

Applying the properties of each column as given in the question statement, i.e, that the entries in each
respective column of F sum to 2, we can simplify this expression for the total number of words further:

total # of words at n+1 = 2 · xnoun[n]+2 · xverb[n]+2 · xadjective[n]

= 2 · (xnoun[n]+ xverb[n]+ xadjective[n]).

Recall that the total number of words in the system at timestep n was simply the sum of each of the
entries of the state vector ~x[n], i.e, the total number of words at time n is always equal to the term in
parenthesis above, (xnoun[n]+ xverb[n]+ xadjective[n]).
Hence, at any timestep n+ 1, the transition matrix F is doubling the total amount of words in the
system from timestep n.

�
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7. Get in the robot, 16A people! (31 points)
You are testing a giant robot that you programmed.

(a) (8 points) You can use a navigation control input ~u ∈ R3 to move the robot to different positions ~p, as
described by:

A~u = ~p, where A =

1 0 2
1 1 2
0 1 a

 .
The value of the parameter a ∈ R determines the robot’s behavior.
You find your giant robot moving only along a plane in space defined by

U=

~p ∈ R3
∣∣∣∣ ~p =

 α

α +β

β

 , α,β ∈ R

 .

Find the value of a in the programmed matrix, which caused your robot to get stuck on the plane
U. Show your work and justify your answer.
Solution:
Solution 1: Inspection of Matrix A and Using Definition of Linear Independence
In order to solve this problem, we need to find a value of a such that the column space of A, C(A),
is represented by the plane U. Since C(A) has a dimension of 2, there are two linearly independent
columns in matrix A. We can see that the first two columns are linearly independent and C(A) is
defined by their span. So the third column must be linearly dependent on the first and second columns.
So we can write: 2

2
a

= α1

1
1
0

+α2

0
1
1


=⇒

2
2
a

=

 α1
α1 +α2

α2


=⇒ α1 = 2

α1 +α2 = 2

α2 = a

Hence, α1 = 2 and α2 = a = 0.
Solution 2: Setting up a System of Equations and Using Gaussian Elimination
We know if the column space of A is equal to the given subspace, i.e. C(A) = U, then the following
must hold for all~u ∈ R3:

A~u = ~p1 0 2
1 1 2
0 1 a

u1
u2
u3

=

 α

α +β

β


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We then apply Gaussian Elimination to this system:

 1 0 2 α

1 1 2 α +β

0 1 a β


→

 1 0 2 α

0 1 0 β

0 1 a β

R2← R2−R1

→

 1 0 2 α

0 1 0 β

0 0 a 0

R3← R3−R2

Reading out the last row, au3 = 0 must hold for all possible values of u3 ∈ R. Therefore, a = 0 for
C(A) = U.

(b) (6 points) Your robot operates with the same model as in part (a), i.e. A~u = ~p. We recall ~u is a nav-
igation control input and ~p is the robot’s position. However, we lost the documentation about the A
matrix! In other words, we don’t know what A is and it may not be the same matrix as in part (a).

You found an interesting phenomenon: two different navigation control inputs, ~u1 and ~u2 move the
robot to the same position ~p, i.e.

A~u1 = A~u2 = ~p, where ~u1 =

2
1
0

 , ~u2 =

1
1
1

 , and ~p =

2
3
1

 .
With this information, find a control input ~u that can return you back to ~p =~0, where your base
of operations is located. Due to some limitations of the robot motors, you cannot command a zero
control input, i.e. ~u 6=~0. Show your work and justify your answer.
Solution:
Solution 1: Findng a vector in the nullspace directly. We have to find a value of~u such that:

A~u =~0,~u 6=~0

Also we are given:

A~u1 = ~p

A~u2 = ~p
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Subtracting the equations from each other we get:

A(~u1− ~u2) = ~p−~p

A(~u1− ~u2) =~0

A(

2
1
0

−
1

1
1

) =
0

0
0


A

 1
0
−1

=

0
0
0


This means that any vector

~u = α

 1
0
−1

 ,α ∈ R,α 6= 0

would be a valid control input to take us back to the base.
Solution 2: Finding structure of the matrix A and solving A~u =~0.
The strategy here will be to write A in terms of its elements and use the given equations to determine
the structure of A.
Let’s express the elements of A as:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .
We will now write out our two equations, A~u1 = ~p and A~u2 = ~p:a11 a12 a13

a21 a22 a23
a31 a32 a33

2
1
0

=

2
3
1

 ,
a11 a12 a13

a21 a22 a23
a31 a32 a33

1
1
1

=

2
3
1

 .
Intuitively, we have 9 unknowns in our matrix A and a system of 6 equations (2 equations per row of
A). So we can use this system of equations to gain more knowledge about the structure of A:

2a11 +1a12 +0a13 = 2⇒ a12 = 2−2a11 (5)

2a21 +1a22 +0a23 = 3⇒ a22 = 3−2a21 (6)

2a31 +1a32 +0a33 = 1⇒ a32 = 1−2a31 (7)

a11 +a12 +a13 = 2 (8)

a21 +a22 +a23 = 3 (9)

a31 +a32 +a33 = 1 (10)
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Substituting the values of a12,a22,a32 from Equations (5), (6), and (7) into Equations (8), (9), and (10),
respectively, we arrive at the following constraints on the structure of A:

a12 = 2−2a11

a22 = 3−2a21

a32 = 1−2a31

a13 = a11

a23 = a21

a33 = a31

We can substitute these expressions back into A. By doing this, we should be able to describe every
entry of A with only 3 variables a11,a21,a31:

A =

a11 2−2a11 a11
a21 3−2a21 a21
a31 1−2a31 a31

 .
Now all that is left is to solve the expression A~u =~0. We can do this using Gaussian Elimination. a11 2−2a11 a11 0

a21 3−2a21 a21 0
a31 1−2a31 a31 0


→

 1 2
a11
−2 1 0

a21 3−2a21 a21 0
a31 1−2a31 a31 0

R1←
1

a11
R1

→

 1 2
a11
−2 1 0

0 3−2 a21
a11

0 0
0 1−2 a31

a11
0 0

R2← R2−a21R1;R3← R3−a31R1

→

 1 2
a11
−2 1 0

0 1 0 0
0 1−2 a31

a11
0 0

R2←
1

3−2 a21
a11

R2

→

 1 0 1 0
0 1 0 0
0 0 0 0

R1← R1− (
2

a11
−2)R2;R3← R3− (1−2

a31

a11
)R2

Letting u3 = α ∈ R, we arrive at the parametric solution ~u = α

−1
0
1

. Recalling that we cannot

command a zero control input, we arrive at the following valid set of control inputs to get us to ~p =~0:

~u = α

−1
0
1

 ,α ∈ R,α 6= 0.

This matches the set of valid control inputs found using the first approach.
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(c) (5 points) Another challenge in navigation is collision avoidance — you don’t want to crash.
You are given the following documentation about the range sensor on Robot A, which is the robot you
control. The range sensor can only detect other robots in the following subspace S:

S=

~p ∈ R3
∣∣∣∣ ~p = α

1
0
1

+β

0
1
1

 , α,β ∈ R

 .

You know that Robot B is located at~b =

 1
−1
1

. Will you be able to detect Robot B, i.e., does~b belong

to the subspace S? Show your work and justify your answer.
Solution: In order for~b∈ S, there must exist α,β ∈R that satisfy the following system of equations:

α = 1 (11)

β =−1 (12)

α +β = 1 (13)

By adding Equations 11 and 12, we arrive at the following:

α +β = 0 (14)

Finally, we subtract Equation 14 from 13 to get:

0 = 1

which indicates we have an inconsistent system of equations. Therefore, we cannot detect Robot B as
~b /∈ S.
We can also arrive at the same conclusion by using Gaussian elimination to solve the system of equa-

tions for the vector of unknowns,
[

α

β

]
.

 1 0 1
0 1 −1
1 1 1


→

 1 0 1
0 1 −1
0 1 0

R3← R3−R1

→

 1 0 1
0 1 −1
0 0 1

R3← R3−R2

We observe the contradictory row corresponding to 0 = 1 and conclude the system is inconsistent.
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(d) (6 points) You are now working on the power source of the robot. The nuclear chain reaction that
powers it can be modeled by state transition matrix Q ∈ R3×3 and the equation:

~v[n+1] = Q~v[n],

where~v[n] is the quantity of reactive species at time step n. Q is:

Q =

1 0 0
0 0.5 0
0 0 10

 .
You realize that some components of~v[n]→ ∞ as n→ ∞.
To stabilize the system you multiply it by a matrix R:

R =

r1 0 0
0 r2 0
0 0 r3

 .
Now the new system would be modeled by

~v[n+1] = QR~v[n].

Your job is to pick the entries of R, and you can only use non-negative values in R, so r1,r2,r3 ≥ 0.
What are the largest values you can choose for r1, r2, and r3 to ensure that the absolute values of
the components in~v[n] 6→ ∞ as n→ ∞? Show your work and justify your answer.
Solution: We first recall our design constraints that r1,r2,r3 have to be non-negative. So now we
need to use the system model and stability constraints to get upper bounds for r1,r2,r3.
In order to ensure our new system is stable (absolute values of the components in~v[n] 6→∞ as n→∞),
we need to ensure that the eigenvalues of QR need to be ≤ 1.
The transition matrix of the new system is given by:

QR =

r1 0 0
0 0.5r2 0
0 0 10r3

 .
Since this matrix is a diagonal matrix, we can immediately read off the eigenvalues λ1,λ2,λ3 of QR
and add the constraint for stability:

λ1 = r1 ≤ 1

λ2 = 0.5r2 ≤ 1

λ3 = 10r3 ≤ 1

Therefore, we identify the following bounds for r1,r2,r3 for the new system to be stable:

r1 ∈ [0,1]

r2 ∈ [0,2]

r3 ∈ [0,0.1]
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The maximum values then are:

r1,max = 1

r2,max = 2

r3,max = 0.1

(e) (6 points) You want to order a new drone to support your robot fleet. The location of the drone is
represented by a vector in R3. You want to program the drone so that it can travel anywhere in the
columnspace of an invertible matrix P∈R3×3. However, a typo in the commands unfortunately means
you end up programming the drone to move in the columnspace of P−1. Is the columnspace of P the
same as the columnspace of P−1? Why or why not?
Hint: Consider the matrix P−1. Is P−1 is invertible?
Solution:
In order for P to be invertible, its 3 columns must be linearly independent. By the same logic, P−1 has
3 linearly independent columns.
We also recall that a set of n linearly independent vectors in Rn is a spanning set for Rn.
Therefore, the columnspace of P is all of R3. Similarly, the columnspace of P−1 is all of R3.
So the columnspace P is the same as the columnspace of P−1.
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