Math 185	First Midterm	October 6, 2020
Name:		

- You have 80 minutes to complete the exam, 9:40-11:00am.
- Please write your name and page number on every page that you submit. The submission deadline is at 11:10am.
- This is a open-book exam, you can use your textbook and notes.
- You may only use the results covered in class so far, including results in the lecture note and results in Stein up to Chapter 2.
- If you have question during the exam, you may contact me in zoom,
- Please write neatly. Answers which are illegible for the reader cannot be given credit.

Good Luck!

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	20	
9	10	
Total	100	

- 1. (10 points, 2 points each)
 - (1) Use z and \overline{z} to express $\operatorname{Re}(z)$, $\operatorname{Im}(z)$, $|z|^2$.
 - (2) If z = 2020 + 1006i, then $|z/\bar{z}| = ?$.
 - (3) If $z = (1/2)e^{i\pi/3}$, then $1/\bar{z} = ?$
 - (4) Give an example of a continuous function $f : \mathbb{C} \to \mathbb{C}$, where f is holomorphic at 0 but no other point in \mathbb{C} . (no justification needed)
 - (5) State the Cauchy-Riemann criterion for a function f to be holomorphic.
- 2. (10 points, 2 points each) Let f be a holomorphic function on the unit open disk \mathbb{D} . Determine whether the following statements is true or false. No justification needed.
 - (1) There exists a sequence of polynomials f_n , such that for any compact set $K \subset \mathbb{D}$, f_n converges to f uniformly on K
 - (2) If f vanishes at infinitely many points in \mathbb{D} , then f is zero.
 - (3) If there is a point $z_0 \in \mathbb{D}$, such that $f^{(n)}(z_0) = 0$ for all $n = 0, 1, 2, \cdots$, then f = 0.
 - (4) Let γ be a closed piecewise smooth curve in \mathbb{D} , possibly with self-intersection, then it is possible that $\int_{\gamma} f(z) dz \neq 0$.
 - (5) If f(0) = 0 and f'(0) = 1, then f(z) = z.
- 3. (10 points) Let $\Omega \subset \mathbb{C}$ be a region (open and connected subset), and $f : \Omega \to \mathbb{C}$ a holomorphic function. Suppose there is a line $L \subset \Omega$, such that f is constant on L. Show that f is constant in Ω .
- 4. (10 point) Show that the function $f : \mathbb{C} \setminus [0, 1] \to \mathbb{C}$

$$f(z) = \int_0^1 \frac{1}{z-t} dt$$

is holomorphic in $\mathbb{C}\setminus[0,1]$, and its derivative is

$$f'(z) = \int_0^1 \frac{-1}{(z-t)^2} dt.$$

(Hint: Use difference quotient to compute the derivative. Do not pass differentiation under the integral sign without justification.)

- 5. (10 point) Let $K \subset \mathbb{C}$ be a compact set, and $f : K \to \mathbb{C}$ is a continuus function. Is it always possible to find a sequence of polynomials $f_n(z)$, such that f_n converges to f uniformly on K? If yes, give a reference. If no, give your reason and a counter example.
- 6. (10 point) If $f : \mathbb{C} \to \mathbb{C}$ is a holomorphic function, and there is a constant C > 0, such that |f(z)| < C(1 + |z|). Show that f(z) = a + bz for some $a, b \in \mathbb{C}$.

- 7. (10 point) Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function. Assume that there exists a point $z_0 \in \mathbb{C}$ and an open neighborhood $D_r(z_0)$, such that $f(\mathbb{C}) \cap D_r(z_0) = \emptyset$. Show that f is a constant function.
- 8. (20 points, 10 points each) Evaluate the following contour integrals.

(1)

$$\oint_{|z|=1} \frac{(z+2)(z+3)}{z(z+4)(z+5)} dz =?$$

(2) For any real number a > 1, evaluate

$$\oint_{|z|=1} \frac{1}{|z-a|^2} |dz|$$

9. (10 point) Let g(z) be a holomorphic function on an open neighborhood of $\overline{\mathbb{D}}, z_0 \in \mathbb{C}$ with $|z_0| = 1$. Let $f(z) = \frac{g(z)}{z-z_0}$. Consider the follower power series expansion

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad z \in \mathbb{D}.$$

Show that

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = z_0.$$

(Hint: write $g(z) = g(z_0) + (z - z_0)h(z)$.)