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.. Physics 7B Fall 2020 Lecture 1 Midterm 1 Solutions

Problem 1 (2 pois)
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Problem 2

Consider an ideal gas of N molecules contained in a cubic room with sides of length L at

temperature T and pressure P.

(a) (6 pts.) Take the average = component of a molecule’s velocity to be ©,. Using v,
and the quantities above, derive an expression for the frequency f with which gas

molecules strikes a wall. You may also use fundamental constants.

Solution: For a single molecule, the average time between two strikes is given by
2L

Vg |

At (3pts.) (1)

Then we notice that the frequency f with which gas molecules strikes a wall is related

to the frequency fo = 1/At for single molecule by

N  Nlu,|
Ny (3pts.) (2)

f=Nfo=

Remark: Here we remark why we can use the average velocity W to compute the

total frequency. The precise definition for the total frequency is

where p(i) is the possibility to find molecules in state ¢, and the average velocity is

defined by m = >, (1) vzl

(b) (6 pts.) Show that the frequency can be rewritten as
PL?

fr~ ——

AmkT

where m is the mass of the molecule.

Solution: To find out the frequency in terms of thermal dynamic variables, we need
to rewrite |v,] and N in terms of thermaldynamic variables. The first step is to

approximate the average velocity m by the rms speed vy ms. We first observe

1 3 3kgT
—mu? = ék‘BT = Upms = B

2 rms

- (1pts) (4)

Then we can get v, ,ms by the fact that velocity in three directions are independent

and isotropic,

1 kgT

V2 2 = 302 - |v_z| R Vg rms = %ans =/ — (1pts.)

2 2
“+v =
Y,rms z,rms T,rms m
(5)

Urms = UI,T’ITL8+



The next step is to find N in terms of thermaldynamic variables, which can be done
using the ideal gas law,

PV PL?
P NkgT N = 2pts.
V = NkgT — kBT &l (2pts.) (6)

The final step is to plug everything back in to Eqn. (12),

N|vm| 1 PL3 k:BT_ PL2
oL 2L kpT  AmkgT

f= (2pts.) (7)

Remark: Points would not be taken off if students do not distinguish v, m, and

Uy rms. However, they have different definitions and physical meanings,

- S veexp(—gmel)du,

Ug; - Zp(l)vi@: — ffooo exp(—%mv%)dvm — O (8)
— . [l exp(—gmul)dv,  [2kpT
|,U£E‘ - Zz:p(Z) |'Uz'7x’ - f_oo eXp( mv2)dfux — m (9)

. [ v2exp(—3mw?)du, kT
= I3 pliz, = — 1
Uz,rms i p(Z>UZ:$ ffo exp(——mv )d?}x m ( O)

Now we notice that [v,] and vy .ms only differ by an O(1) factor 1/2/7 = 0.80, so the
approximation we made is valid. This allows us to write down the precise formula for

the total frequency,
PL?

V2mmkgT

(c) (8 pts.) Assume a cubic air-filled room is at sea level, has a temperature 20°C, and

/= (11)

has sides of length L = 3m. Determine f. Assume that air is 80% Nitrogren and 20%
Oxygen.
Solution: This is a tricky question as we cannot simply use the average mass for

the molecules since f does not depend linear on m. The right way to carry out the

computation is to use the precise definition for the total frequency,

NN2|UN2,96| N02|U02,50|
F=2 0@ fi+ Y plify = =5+ =0 (12)
1€No jEOQ
N, PL? N, PIL?
= o 4+ 202 (13)

N \/4mN2kBT N \/4m02k3T
<NN2 I, No, 1 ) PL?
N m Nz N y/mo, ) v4kgT

(4pts.) (14)



An equivalent way to understand this formula is that under thermal equilibrium, the

ratio of partial pressures equals the ratio of the number of molecules,

A (15)
P N

Then we can use the partial pressure for Ny and Os to compute their frequency sepa-

rately and then sum up,

Py, L? Po,L? Ny, PL? No,  PL?
J =N+ fo, = + = +
\/4mN2 k?BT \/477102 k?BT N \/ 47TLN2 ]{?BT N 4m02 k)BT
(16)

Now we only need to plug in the numbers P = 1.013 x 10°Pa, L =3m, T = 293K (1
pts.) to find the final result

/= ( 08 . 02 ) 1.013 x 10° Pa - (3m)? an
V28u  V32u/ \/4-(1.66 x 107*"kg/u) - 1.38 x 1072 J/K - 293 K
= 3.283 x 10 Hz (3pts.) (18)

Remark: From Eqn. (12), we can define the effective mass

1 N, 1 N 1 1
(¥t V) (15
N2 O ﬂmNQ—i_%moz

\ Meft

It is important to notice that meg is not equal to the usually defined average mass
m = %mN2 + %m%. A common mistake is to use the average mass m instead
of the effective mass meqg to compute the total frequency. A similar problem can be

found in Week 2 session problems regarding the rms speed of atoms in outer space.

Partial credit (4 pts.) will be given to those who use the average mass approach.
In particular, two points will go to a correct average atomic mass m = 0.8 - 28u +
0.2 - 32u = 28.8u, the other two points will go to the correct numerical frequency
f = 3.279 x 10*® Hz using this approach. It is worth noticing that this result is the

same as the correct answer up to three significant digits.
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Problem 4

If we consider using the van der Waals equation of state for oxygen gas, exper-
iments find that a = 0.14N'm*/mol? and b = 3.2 x 10°m3/mol yield the best fits.
Determine the pressure in 1.0 mol of the gas at 0°C if its volume is 0.70 L,
calculated using

(a) (6 pts.) the van der Waals equation

Solution:
_ R a (1)
- (V/n)=b  (V/n)?
P = 3242.32kPa (2)
(b) (6 pts.) the ideal gas law
Solution RT
p= ”? = 3242.46kPa (3)

Now consider a 0.5 mol sample of O2 gas that is in a large cylinder with a
movable piston on one end so it can be compressed. The initial volume is large
enough that there is not a significant difference between the pressure given by
the ideal gas law and that given by the van der Waals equation.

(c) (8 pts.) As the gas is slowly compressed at constant temperature (300
K), at what pressure does the van der Waals equation give a volume that is 5%
different than the ideal gas law volume? Use the values of a and b given above.

Solution

We need Vyau /Videar = ¢ = 0.95.

Vodw = ¢ X Videar = ¢ X TLRT/P (4)
Replace V, 4., in the Van der Waals equation:



_RT a RTP aP?

T b (PR CRT-bP - (cRT)?

c2(RT)3P — caRTP? + abP3
(¢cRT)?(cRT — bP)
Dividing by P and multiplying by the denominator:

P =

(cRT)? — (¢cRT)*bP = ¢*(RT)? — caRTP + abP?
Rearranging:

abP? — cRT(a — ¢cRTbH)P + (RT)*c*(c — 1) = 0

Plugging in numbers and solving the quadratic equation, we get:

P=55x10Pa



Problem 5

a. Along the adiabats Q@ = 0.

For an isovolumetric process W = 0

QL =AFE4q = 2nR(T, — Ty)

b. For an isobaric process Qp = nCpAT

Qu =n(% +1)RAT
QH = %TLR(TC — Tb)

W |
Qm— QH
AT, Ty
B _;Tc_Tb

Va=1V,
T. V.
T, V,

To Ty (Vy
Td_Tc(vc
e _1<Va

A7
7
75

1
1
2 formula + 1 sign

1
1
2 formula + 1 sign
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