UNIVERSITY OF CALIFORNIA AT BERKELEY CE C30/ME C85, Section 2, Spring 2020 Department of Civil and Environmental Engineering Instructor: F. Armero

CE C30/ME C85, Section 2, Final Examination

Open books and notes, online, 3 hours

Maximum of 3 one-sided pages per problem

Tuesday, May 12, 2020 (8-11am PST)

LAST NAME: _____

FIRST NAME: _____

LAST 4 DIGITS OF STUDENT ID #:

BOX YOUR ANSWERS

NUMBER PAGES PER PROBLEM

Page 1.1, Page 1.2,... Page 2.1,...

•••

Problem 1:	/15
Problem 2:	/20
Problem 3:	/15
Problem 4:	/20
Problem 5:	/15
Problem 6:	/15
TOTAL:	/100

	Online Examinations Honor Code Statement
LAST I	NAME:
FIRST	NAME:
LAST 4	<u>I DIGITS</u> OF STUDENT ID #:
lished (1) I (2) I (3) I (3) I (4) T t	gning below, I acknowledge that, following the earlier estab- and agreed rules for online examinations in this course: have worked out this examination individually, have not discussed nor communicated about any part of the xam with anybody, in any way, during the exam, have complied with the time assigned to the exam and its ubmission, acknowledging that no late submissions are ac- epted, and The pages included in the PDF file that I am submitting form he totality of my exam, complying with the limitation of three one-sided pages maximum per problem.
SIGN	ATURE:
DATE a	& TIME:
	Please sign, date and upload with your examination

Problem #1 (15%)

The truss depicted in the figure is held by a single cable going through a pulley (which is free to rotate), connecting joints A and C as shown (at 30° at both joints). All the members of the truss have a $a \times a$ square section and are made of a linear elastic material with young modulus E.

- Determine the tension in the cable and the forces in all the members of the truss for the loading shown (a vertical force *P* at joint E).
- 2. Determine the maximum load P_{max} that can be applied so no member buckles.

Remark: Express your results in terms of P, L, a and E, as needed.

Problem #2 (20%)

A composite bar of total length L is made by welding together two bars of lengths L/3 and 2L/3, and cross section areas A and 2A, respectively, as shown in the figure. The composite bar is loaded by constant distributed axial loads n (force/length) on opposite directions as shown, while kept attached to two rigid walls. The material can be considered to be isotropic linear elastic with Young modulus E. Determine:

- 1. The <u>reactions</u> at both ends.
- 2. The distribution of the <u>axial stress</u> along the composite bar (draw a plot with the characteristic values). Specify carefully the part that is in tension and compression.
- **3.** The <u>displacement</u> of the connection between the two single bars. Specify clearly its direction.

Problem #3 (15%)

A shaft consists of a solid base of length L/4 and circular cross section of radius a, with its remaining 3L/4 length having the hollow triangular cross section of thickness $t \ll a$ shown on the right. All parts are made of the same material, which can be considered isotropic linear elastic with shear modulus G up to the yield limit τ_{yp} in shear. The shaft is subjected to a constant distributed torque k (torque/length) along its hollow part, while fixed at the opposite end, as shown in the left figure. Determine:

- 1. The angle of twist at the free end on the right while the shaft remains elastic.
- **2.** The maximum value of k that can be applied before the shaft starts yielding.

Remark: Express your answers in terms of k, L, τ_{yp} , G, a and t, as necessary.

Problem #4 (20%)

A beam is made by bolting together four pieces, leaving a hollow $h \times b$ rectangular cross section as shown. The beam is loaded as depicted in the figure and can be considered to be made of an isotropic linear elastic material with Young modulus E and Poisson ratio ν .

- **1.** Draw carefully the bending moment and shear force diagrams (indicate clearly all the characteristic values).
- 2. Determine the maximum tensile and compressive stresses acting on a cross section.
- **3.** If the bolts are to be located at a constant spacing along the beam, determine the maximum spacing if the bolts can only take a maximum force F_{max}^{bolt} in shear.

Remark: Express your results in terms of w, h, b, L, E, ν and F_{max}^{bolt} , as needed.

Problem #5 (15%)

For the beam shown in the figure with its loading, determine:

- 1. The beam's deflection v(x). Sketch the deflected shape of the beam.
- 2. The bending moment M(x) and transverse shear force V(x) diagrams. Plot your answer indicating characteristic values.
- 3. The reacting forces and moments at the supports. Indicate clearly their directions.

Problem #6 (15%)

- Sketch the Mohr circles for the state of stress sketched in the figure, with <u>plane stress</u> in the z direction (perpendicular to the paper). Determine the principal stresses and the planes where they act (sketch clearly a block oriented along these directions with the corresponding stresses).
- 2. Determine the relative change of thickness in the z direction if the material is isotropic linear elastic with Young modulus $E = 200 \, GPa$ and Poisson ratio $\nu = 0.3$. <u>Indicate clearly if it</u> <u>stretches or contracts</u>. (Assume the block is $1 \times 1 \times 1 m^3$ if you need the dimensions in your calculations).

3. If the stress σ_z starts varying while keeping the stress components in the x - y plane fixed, determine the possible range of variation before yielding occurs according to <u>Tresca criterion</u> with an <u>uniaxial yield limit</u> of $\sigma_{yp} = 12 MPa$.