Q1.2 Eigenspace If W is a 3-dimensional subspace of \mathbb{R}^5 then to the eigenspace of A corresponding to $\lambda=1$. Q1.3 Subspace Let M_2 be the vector space of 2 imes 2 real matrices w multiplication. Then the set

 $H = \{X \in M_2 : X^2 = 0\}$

 $z \cdot x = z \cdot y = 0$

ormal basis $\mathcal{B}=\{b_1,b_2\}$ of \mathbb{R}^2 such that $[b_1]_{\mathcal{B}}=b_2$

 $\mathrm{proj}_W:\mathbb{R}^3\to\mathbb{R}^3$

 $T(p) = \begin{bmatrix} p(0) \\ p'(0) \\ p''(0) \end{bmatrix},$

 $M_2 = \left\{ egin{bmatrix} x_{11} & x_{12} \ x_{21} & x_{22} \end{bmatrix} : x_{ij} \in \mathbb{R}
ight\}$ 2 real matrices with entrywise mation $S:M_2 o M_2$ by $S(X) = X - X^T.$

 $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 4 \\ 0 & 0 & 2 \end{bmatrix}.$

 $A = \begin{bmatrix} 1 & 0 & -1 & -1 \\ 0 & -1 & 2 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$

e vector $\hat{b} \in \mathrm{Nul}(A)$ which is clo

Q1.4 Composition

Q1 True or False

Q1.1 Nullspace If W is a 3-dimenting the nullspace of A.

If A is a diagonalizal

Q1.7 Similar Rank

If A is similar to B then rank(A) = rank(B).

Q1.8 Row Ops

of A,B are m imes n matrices and A is row same distance from $\operatorname{Col}(A)$ and $\operatorname{Col}(B)$.

Q1.9 Zero

If x,y are li

en z = 0.

Q1.10 Coordinate Dot Product If $x,y\in\mathbb{R}^n$ are orthogonal and $\mathcal B$ is a basis of \mathbb{R}^n , then $[x]_{\mathcal B}\cdot[y]_{\mathcal B}=0$ Q2 Honor Code + Cheat Sheet + Instructions

Q3 Examples

Q3.2 Diagonalizable Q3.3 Coordinates

A subspace W of \mathbb{R}^3 such that $W
eq \mathbb{R}^3$ and the orthogon

Q4 Polynomials

Q5 Transpose

(a) (10pts) Find a basis $\mathcal B$ of M_2 in which $_{\mathcal B}[S]_{\mathcal B}$ (i.e., the matrix of S w is diagonal, and write that diagonal matrix. Explain your reasoning.

(b) (3pts) Find a basis for the kernel of ${\cal S}$ Q6 High Power

(b) (3pts) Show that A is invertible. What is t A^{-99} means $\left(A^{-1}\right)^{99}$). Q7 Distance to Nullspace

) (3pts) Letting $W=\operatorname{Nul}(A)$, find vectors $y\in W$ and $z\in W^\perp$ such that