
U.C. Berkeley — CS170 : Algorithms Midterm 1
Lecturers: Alessandro Chiesa and Jelani Nelson February 20, 2020

Midterm 1

Name:

SID:

Name and SID of student to your left:

Name and SID of student to your right:

Exam Room:
� 10 Evans � 1 Pimentel � 2050 VLSB � Wheeler Auditorium � 540AB Cory � Other

Please color the checkbox completely. Do not just tick or cross the box.

Rules and Guidelines

• The exam is out of 85 points and will last 110 minutes.

• Answer all questions. Read them carefully first. Not all parts of a problem are weighted equally.

• Write your student ID number in the indicated area on each page.

• Be precise and concise. Write in the solution box provided. You may use the blank page on
the back for scratch work, but it will not be graded. Box numerical final answers.

• The problems may not necessarily follow the order of increasing difficulty.

• Any algorithm covered in the lecture can be used as a blackbox.

• Throughout this exam (both in the questions and in your answers), we will use ωn to denote
the first nth root of unity, i.e., ωn = e2πi/n. So ω16 will denote the first 16th root of unity, i.e.,
ω16 = e2πi/16.

• Good luck!
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Discussion Section

Which of these do you consider to be your primary discussion section(s)? Feel free to choose multi-
ple, or to select the last option if you do not attend a section. Please color the checkbox completely.
Do not just tick or cross the boxes.

� Fred Zhang Wheeler 202 • Tu 5-6pm

� Jialin Li Etcheverry 3105 • Tu 5-6pm

� Tiffany Chien Etcheverry 3109 • W 9-10am

� Sidhanth Mohanty Wheeler 130 • W 9-10am

� Teddy Tran Moffitt Library 106 • W 10-11am

� Emaan Hariri Hearst Field Annex B5 • W 12-1pm

� Dee Guo Wheeler 224 • W 12-1pm

� Arpita Singhal Dwinelle 234 • W 1-2pm

� Gillian Chu Barrows 136 • W 1-2pm

� Rachel De Jaen Barrows 155 • W 1-2pm

� Joshua Turcotti Wheeler 20 • W 2-3pm

� Varun Jhunjhunwalla Wheeler 202 • W 2-3pm

� Vishnu Iyer Etcheverry 3113 (Advanced Section) • W 2-3pm

� Avni Singhal Wheeler 30 • W 3-4pm

� Jiazheng Zhao Dwinelle 229 • W 3-4pm

� Rishi Veerapaneni Wheeler 224 • W 3-4pm

� Jeff Xu Evans 9 • W 3-4pm

� Noah Kingdon Wheeler 202 • W 5-6pm

� Neha Kunjal Hildebrand B51 • Th 11-12pm

� Christina Jin Evans 9 • Th 12-1pm

� Noah Krakoff Moffitt Library 103 • Th 1-2pm

� Ajay Raj Wheeler 202 • Th 2-3pm
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1 Comparing asymptotics (4 points)

For each question, fill in all circles that apply.
f = O(g)? g = O( f )?

f (n) = 4n g(n) = 16log2(n) i i
f (n) = (

√
n + n)(30

√
n) g(n) = n2 i i

f (n) = n3 g(n) = nlog3(26) i i
f (n) = n0.001 g(n) = log2 n i i
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2 True or False? (5 points)

Mark your choice for each of the following. Fill in the bubble completely, as incomplete markings
will not be given credit.
Grading: +1 for each correct answer, 0 for leaving blank, and −1 for each incorrect answer. Any
negative score will affect your entire exam.

(a) (1 point) A DAG does not necessarily have a unique topological ordering.

hTrue hFalse

(b) (1 point) On graphs with negative edge weights, Dijkstra does not work since it does not nec-
essarily halt; otherwise, once it halts, it outputs the correct solution.

hTrue hFalse

(c) (1 point) If DFS on a directed graph G = (V, E) produces exactly one back edge, then it is
always possible to remove an edge e from the graph G such that G′ = (V, E− {e}) is a DAG.

hTrue hFalse

(d) (1 point) If the directed graph G contains a cycle, and removing an edge from G can make it
acyclic, then any DFS on G would produce exactly one back-edge.

hTrue hFalse

(e) (1 point) If DFS on a directed graph G = (V, E) produces two back edges, there must be at least
two strongly connected components which each have at least 2 vertices in the original graphhTrue hFalse
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3 Recurrences (8 points)

Write down the solutions to the following recurrence relations (only the final answer is needed).
Write down the tightest bound that you can derive. You may use big-O notation.

(a) (2 points) T(n) = 23T( n
3 ) + 2n3

(b) (2 points) T(n) = 3T
(

n
1
3

)
+ 5n, and T(3) = 3.

(c) (2 points) T(n) = 8T(n− 3)+ 1, and T(0) = T(1) = T(2) = 1.

(d) (2 points) T(n) = T(n/5) + T(4n/5) + 3n2
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4 Dijkstra’s (6 points)

Execute Dijkstra’s algorithm on the following graph starting at vertex A and breaking ties alphabet-
ically.
Here is the algorithm for reference. Assume that decreasekey does nothing if the vertex is not in the
heap.

Algorithm 1 Dijkstras(G, l, s)

for all u ∈ V do
dist(u) = ∞
prev(u) = null

end for
dist(s) = 0
H = makequeue(V) (using dist-values as keys)
while H is not empty do

u = deletemin(H)
for all edges (u,v) ∈ E do

if dist(v) > dist(u) + l(u, v) then
dist(v) = dist(u) + l(u, v)
prev(v) = u
decreasekey(H, v)

end if
end for

end while
return dist

A

B

C

D E

F

G

3

−7

1

−3

4

4

1

8

Fill in the following table with the shortest paths computed by Dijkstra’s algorithm:

A B C D E F G
0
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5 Factorials (10 points)

In this question, assume you can multiply two d-bit integers in time O(d1.59). Given an integer n,
design an algorithm to compute n! that runs in time O(n1.59 logc n) for some constant c > 0. Hint:
divide and conquer.

(a) Describe your algorithm succinctly below.

(b) Provide a rigorous analysis for the runtime of your algorithm. Recall you showed on home-
work that log(n!) = Θ(n log n).

7



Midterm 1 A. Chiesa & J. Nelson

6 Fast Force Computation (10 points)

5 charged particles are placed on a line. Particle i is placed at point i on the x-axis with charge ci. The
force on particle j in the system is

f j = ∑
i<j

ci
(i− j)2 −∑

i>j

ci
(i− j)2 .

(a) Set up two polynomials p(x) and q(x) so that f1, . . . , f5 appear as coefficients of p(x) · q(x). (It
is okay if p(x) · q(x) have other irrelevant coefficients as well.) Your answer should depend on
c1, . . . , c5.

p(x) =

q(x) =

(b) What is the index of the coefficient of p(x) · q(x) corresponding to f3? (e.g. if it is the coefficient
of x2, write 2.)
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7 Tree matches (20 points)

Let T be an unweighted and undirected tree on vertex set V = {1, . . . , 2n}. E(T) is the set of T’s
edges, and V(T) is the set of its vertices. We call a collection of n pairs P = {(u1, v1), . . . , (un, vn)} a
valid pairing if for i = 1, . . . , n, ui 6= vi and each vertex v ∈ V occurs in exactly one of the n pairs. We
define the cost of a valid pairing P as

fT(P) :=
n

∑
i=1

dT(ui, vi)

where dT(a, b) is the length of the shortest path between a and b in T. In this question we will see an
O(n) time algorithm to compute the minimum cost of a valid pairing; in particular, to compute

OPT(T) := min
P valid pairing

fT(P).

We emphasize that OPT(T) is a number — namely the minimum value attained by f (We don’t ask
you to output the a pairing with minimum cost.)

(a) (5 points) Let P∗ = {(u1, v1), . . . , (un, vn)} be a valid pairing such that fT(P∗) = OPT(T) and
let pt denote the unique path between vertices ut and vt in T. Prove that for any i, j ∈ {1, . . . , n}
such that i 6= j, pi and pj are edge-disjoint. We say two paths pi and pj are edge-disjoint if the
collection of edges used by pi does not intersect the collection of edges used by pj. You are
encouraged to illustrate your proof idea in a diagram.
Hint: What if for some i < j, pi and pj shared an edge e? Can you make a small change to P∗ to obtain
a new pairing P′ with f (P′) < f (P∗)?
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(b) (5 points) Let P∗ and pt be defined as in part (a) and let L ⊆ E(T) be a subset of edges defined
as follows:

L := {e : ∃pt such that e ∈ pt}.

Deleting an edge e ∈ E(T) splits T into two trees Te,1 and Te,2. Prove that e ∈ L if and only if
|V(Te,1)| and |V(Te,2)| are both odd numbers.
Try to use the result of part (a) to show that if |V(Te,1)| and |V(Te,2)| are both even, then e /∈ L. You
will additionally need to argue that if |V(Te,1)| and |V(Te,2)| are both odd, then e ∈ L.
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(c) (10 points) Use the result of part (b) to devise an algorithm to compute OPT(T). Full points
will be given for an O(n)-time algorithm.
Hint: Observe that OPT(T) = f (P∗) = |L| where L is defined in part (b).
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8 Trickster negative cycles (22 points)

(a) (4 points) Draw a weighted directed graph G with the following properties:

(i) it contains a negative-weight cycle,

(ii) it has two vertices S and T such that the length of the shortest path between S and T is
positive.

Make sure to explicitly write the weight of each directed edge in the graph you draw! The
distance between S and T in your graph should be positive.
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(b) (8 points) Consider the following graph:

S A

C

E
B

T0

T1

T2 U0

U1

U2

V0

V1

V2

W0

W1

W2

3

−2
1

1

−1 −1

−1

−1 −1

−1

−5

−5
−5 10

5
8

20

15

3
3

−1

−10

3

3

The graph has exactly four negative cycles: T0T1T2, (which we will call cycle T), U0U1U2 (which
we will call cycle U), V0V1V2 (which we will call cycle V), W0W1W2 (which we will call cycle
W).

We say that the distance path between nodes X and Y is not well-defined if for any path from X
to Y, you can find a strictly shorter path (e.g. there’s a path of length 10 from X to Y, one of
length 5 from X to Y, one of length 0, one of length -5, etc)

(i) Consider what happens if all negative cycles except one are removed from the graph. You
would like the distance from S to B to be well-defined.
Mark all of the negative cycles for which keeping only that negative cycle results in the
distance from S to B being well-defined. hT hU hV hW

(ii) Consider what happens if all negative cycles except one are removed from the graph. You
would like the distance from S to E to be well-defined.
Mark all of the negative cycles for which keeping only that negative cycle results in the
distance from S to E being well-defined. hT hU hV hW

(iii) Consider what happens if all negative cycles except one are removed from the graph. You
are interested if Bellman-Ford starting from S then reports that distances are not well-
defined.
Mark all of the negative cycles for which keeping only that negative cycle results in Bellman-
Ford starting from S reporting that distances are not well-defined.hT hU hV hW

(iv) Now consider what happens if all negative cycles are removed from the graph, and you
run Bellman-Ford starting from S. True or false: The shortest-paths tree produced by
Bellman-Ford in this case is independent of the order in which it updates the edges.

hTrue hFalse
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The main insight from the previous problem is the shortest path can still be well-defined between
some pairs of vertices despite the existence of negative cycles.

(b) (10 points) Give an algorithm that takes in a weighted directed graph G = (V, E) (poten-
tially with negative weight cycles) along with two vertices s and t as input, and outputs the
length of the shortest path between s and t if it is well-defined and the string “no well-defined

shortest path” otherwise.

Any algorithm that correctly solves this problem and runs in time polynomial in |V| and |E|
will receive full credit. You may freely use algorithms covered in lecture in a black-box fashion.
Hint: modify the graph and feed the modified graph to the Bellman–Ford algorithm.

(i) Give a description of your algorithm.
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(ii) Give a run-time analysis of your algorithm.
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