Mathematics 54 Final Exam, 16 December 2019 180 minutes, 90 points

NAME:	ID:	
GSI:		

INSTRUCTIONS:

Justify your answers, except when told otherwise. All the work for a question should be on the respective sheet.

This is a CLOSED BOOK examination. Use of electronic devices (phones, tablets, etc) is NOT permitted. However, you may use a (two-sided) sheet of notes or formulas if you brought one with you.

Please turn in your finished examination to your GSI before leaving the room.

Credit: Q1:35; Q2:20; Q3:10; Q4:15; Q5:10. Bonus: 5

Question 1. (35 points) Select the correct answers, for 2.5 points each. No justification needed. Incorrect answers carry *no penalty* (but also no credit).

To receive credit, please record your choices by bubbling in the entries in the table on p.4. Mind how the answers are labeled (down columns).

- 1. When can we be certain that a system $A\mathbf{x} = \mathbf{b}$, with a 5 × 4 matrix A, is consistent?
 - (a) Always(c) When $\mathbf{b} \perp Nul(A)$ (e) When A has four pivots(b) When \mathbf{b} is in Nul(A)(d) When $\mathbf{b} \perp LNul(A)$ (f) When Nul(A) = $\{\mathbf{0}\}$

2. For which vector **b** below does the system $\begin{bmatrix} 2 & 4 \\ 4 & 6 \\ 3 & 4 \end{bmatrix}$ **x** = **b** have a solution?

(a) $\begin{bmatrix} 2\\3\\1 \end{bmatrix}$ (b) $\begin{bmatrix} 3\\4\\3 \end{bmatrix}$ (c) $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ (d) $\begin{bmatrix} 2\\2\\1 \end{bmatrix}$ (e) $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ (f) $\begin{bmatrix} 2\\2\\2 \end{bmatrix}$

3. For general matrix A, which of the following must remain unchanged under row operations?
(i) The row space
(ii) The column space
(iii) The positions of the pivot columns

(a) (i) and (ii)(c) (i) and (iii)(e) (ii) but not (i) or (iii)(b) (ii) and (iii)(d) (i), (ii) and (iii)(f) All of them can change

4. Which of the following collections of vectors in \mathbb{R}^4 are linearly dependent?

(a) $\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_3 + \mathbf{e}_4$ (c) $\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}_2 - \mathbf{e}_3, \mathbf{e}_3 - \mathbf{e}_4$ (e) $\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$ (b) $\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_3 + \mathbf{e}_1$ (d) $\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}_2 - \mathbf{e}_3, \mathbf{e}_3 - \mathbf{e}_1$ (f) $\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_3 + \mathbf{e}_4, \mathbf{e}_4$

5. Which of the matrices below have rank 2?

$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 3 \\ 4 & 7 & 7 \end{bmatrix}$	$\begin{bmatrix} 1\\2\\4 \end{bmatrix};$	$B = \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 4 & 1 \\ 1 & 0 \end{bmatrix};$	$C = \begin{bmatrix} 1\\ 2\\ 4 \end{bmatrix}$	$ \begin{bmatrix} 2 & 3 \\ 4 & 6 \\ 7 & 10 \end{bmatrix} $; $D =$	$\begin{bmatrix} 3 & 2 \\ 4 & 5 \\ 1 & 2 \end{bmatrix}$	$\begin{array}{c}1\\4\\3\end{array}$
(a) A, B and C but not	D	(c) A as	nd C but	not B, D	(6	e) B, C as	nd D b	out not A
(b) B and C but not A	, D	(d) C a	nd D but	not A, B	(f) They a	ll have	rank 2

6. For a general $m \times n$ matrix A, the dimensions of Col(A) and of Row(A) agree if and only if

(a) A is symmetric	(c) A is diagonalizable	(e) They always agree!
(b) A is square	(d) A is invertible	(f) A is orthogonal

7. If A and B are square matrices of the same size, we can safely conclude that

(a) AB = BA (c) $AB^T = B^T A$ (e) $(AB)^T = A^T B^T$ (b) $(A - B)(A + B) = A^2 - B^2$ (d) $(AB)^T = B^T A^T$ (f) None of the above.

8.	If linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ satisfies $T(\mathbf{e}_1 - \mathbf{e}_2) = \mathbf{e}_2 - \mathbf{e}_3$, $T(\mathbf{e}_2 - \mathbf{e}_3) = \mathbf{e}_3 - \mathbf{e}_1$ and $T(\mathbf{e}_3 - \mathbf{e}_1) = \mathbf{e}_1 - \mathbf{e}_2$, then we can be certain that							
	(a) T is invert	ible		(d) $e_1 - e_2 +$	\mathbf{e}_3 is in the rang	e of T		
	(b) T is orthog	gonal		(e) T has ran	k 2 or more			
	(c) $T(\mathbf{e}_1) = \mathbf{e}_2$	1		(f) T does not	t exist			
9.	The following	is an eigenvalue	of $A = \begin{bmatrix} -1 & 2\\ 4 & 1\\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 3\\5\\7\end{bmatrix}$:				
	(a) 1	(b) 2	(c) 3	(d) 4	(e) 5	(f) (-1)		
10.	Let A be a $3 >$	< 4 matrix. Whi	ch of the followin	g statements ab	out $A^T A$ cannot	be true?		
	(a) It is square	e	(c) It is inverti	ible	(e) It is diago	nalizable over ${f R}$		
	(b) It is symm	etric	(d) It has rank	x 3	(f) Its eigenva	alues are ≥ 0		
11.	In which situa	tion below can	we be sure that the	ne real $n imes n$ ma	atrix A has posit	<i>ive</i> determinant?		
	(a) A has posi	tive entries		(d) A is diago	onalizable			
	(b) There exis	ts a matrix B w	with $AB = I_n$	(e) All eigenv	alues of A are po	ositive real		
	(c) A has positive of A has positive of A has positive of A has positive of A has	tive pivots		(f) A is ortho	gonal			
12.	The least-squa	ures solution to	$\begin{bmatrix} 1\\2\\1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 3\\6\\9 \end{bmatrix} $ is					
	(a) $x = 0$	(b) $x = 1$	(c) $x = 2$	(d) $x = 3$	(e) $x = 4$	(f) Not listed		
13.	Pick the matri	ix below which i	s NOT diagonaliz	able:				
	(a) $\begin{bmatrix} 1 & 3 \\ 4 & 1 \end{bmatrix}$	(b) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	(c) $\begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$	(d) $\begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}$	(e) $\begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix}$	(f) $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 3 \\ 2 & 3 & 4 \end{bmatrix}$		
14.	The exponenti	al of the matrix	$\begin{bmatrix} 0 & -t \\ t & 0 \end{bmatrix}$ is					
	(a) $\begin{bmatrix} 0 & e^{-t} \\ e^t & 0 \end{bmatrix}$		(c) $\begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}$	$\begin{bmatrix} in t \\ s t \end{bmatrix}$	(e) $\begin{bmatrix} \cos t & is \\ i \sin t & c \end{bmatrix}$	$\sin t$		
	$\begin{bmatrix} e & 0 \end{bmatrix}$			$s \iota$	$\begin{bmatrix} \iota \sin \iota & \iota \end{bmatrix}$			
	(b) $\begin{bmatrix} 0 & -e \\ e^t & 0 \end{bmatrix}$		(d) $\begin{bmatrix} \cos t & -i \\ i \sin t & 0 \end{bmatrix}$	$\left[\cos t\right]$	(f) $\begin{bmatrix} e & 0 \\ 0 & e^{-it} \end{bmatrix}$			

Q1	a	 \odot		e	Ð
Q2	a	 \odot	\bigcirc	e	Ð
Q3	a	 \odot		e	Ð
Q4	a	 \odot		e	Ð
Q5	a	 \odot		e	Ð
Q6	a	 \odot		e	Ð
Q7	a	 \odot	\bigcirc	e	Ð

Q8	a	 \odot	 e	ſ
Q9	a	 \odot	 e	Ð
Q10	a	 \odot	 e	Ð
Q11	a	 \odot	 e	Ð
Q12	a	 \odot	 e	Ð
Q13	a	 \odot	 e	Ð
Q14	\overline{a}	 \odot	 e	1

Question 2. (20 points)

Find a solution to the 2^{nd} order differential equation

$$x''(t) + x(t) = 4|t| \cdot \sin(t), \qquad t \in \mathbb{R}$$

with initial conditions x(0) = x'(0) = 0.

Check that your solution is twice differentiable everywhere, including at t = 0.

Is it three times differentiable there? Why or why not?

Use this to write down all the (twice differentiable) solutions of the equation.

Hint: Consider the cases $t \ge 0$ and $t \le 0$ separately and use them to assemble a solution on \mathbb{R} .

Question 3. (10 points) Find the solution with initial condition $\mathbf{x}(0) = \begin{bmatrix} 2\\ 2 \end{bmatrix}$ for the ODE $\frac{d\mathbf{x}}{dt}(t) = \begin{bmatrix} 4 & 1\\ -1 & 4 \end{bmatrix} \mathbf{x}(t)$. Question 4. (15 points)

Find a particular solution for the following vector-valued ODE:

$$\mathbf{x}'(t) = \begin{bmatrix} -5 & 2\\ -6 & 2 \end{bmatrix} \cdot \mathbf{x}(t) + \frac{1}{e^{2t} + 1} \begin{bmatrix} 5\\ 8 \end{bmatrix}.$$

You may choose your method, but you must explain it briefly. Help with integrals: $\int \frac{dt}{t^2+1} = \arctan(t) + C$

Question 5. (10 points)

Find all the numbers λ for which the differential equation $x''(t) = \lambda x(t)$ has non-zero solutions x(t) which satisfy $x(0) = x(\pi) = 0$. For each such λ , write down all such solutions.

Suggestion: Write the general solution of the equation for a fixed λ , and adjust the constants to make $x(0), x(\pi)$ vanish. You may assume that λ is real, if it helps your calculation.

Bonus Question. (5 points)

You can only get credit for this if you solved Q5 correctly.

(a) For any two twice-differentiable functions f, g which vanish at 0 and at π , show that

$$\int_0^{\pi} f''(t)g(t)dt = \int_0^{\pi} f(t)g''(t)dt.$$

(b) By using (a), or by direct computation, show that two solutions f, g as in Q5, but associated to two different values of λ are orthogonal in the sense that

$$\int_0^{\pi} f(t)g(t)dt = 0.$$

Cultural comment: This, plus Q5, show that the eigenfunctions of the second derivative operator, $f \mapsto f''$, form an orthogonal collection in the space of differentiable functions on $[0, \pi]$ vanishing at the endpoints. General theorems ensure that it is *complete*, so that any function above has a series expansion, convergent in mean square, in terms of the eigenfunctions you found in Q5.

THIS PAGE IS FOR ROUGH WORK (not graded)