
Your Name (first last)

←​ Name of person on left (or aisle)

UC Berkeley CS61C

Final Exam Fall 2019
Solutions

TA name

SID

Name of person on right (or aisle) ​→

Fill in the correct circles & squares completely…like this: ​⬤​ (select ONE), and ​⬛​(select ALL that apply)

When you see​ ​SHOW YOUR WORK​, that means a correct answer ​without work​ will receive
NO CREDIT, and your work needs to show how you were led to the answer you reached. If you find
that there are multiple correct answers to a “select ONE” question, please choose just one of them.

Question 1 2 3 4 5 6 7 8 9 10 Total

Minutes 2 8 20 30 30 12 18 15 15 30 180

Points 5 11 14 30 30 12 18 15 15 30 180
Quest-clobber questions: Q2ad, Q3
Midterm-clobber questions: Q1-6

CS61C Final Clarifications
1. All answers should be fully simplified

unless otherwise stated.
2. Value of the float, not the bits
3. ASCII Value 0xFF == nbsp
4. RISCV Qa: 0 < x < 10.

Q1) CALLer/CALLee Convention… ​ (5 pts)

Determine which stage of ​CALL​ each of the following actions
happen in. Select ONE per row. C​ompiler A​ssembler L​inker L​oader

a) ​Copying a program from the disk into physical memory
Again, that’s one of the jobs of the loader.

◯ ◯ ◯ ⬤

b) ​Removing pseudoinstructions
These are done by the assembler, so that the link editor knows
the relative positions of each line of assembler, without needing
to worry about pseudocode expansion.

◯ ⬤ ◯ ◯

c) ​Determining increment size for pointer arithmetic
The assembly code has to know this -- whether ​addi t0 t0 1
(for advancing a pointer to an array of ​uint8_t​) or ​addi t0 t0
4​ (for an array of ​uint32_t​)

⬤ ◯ ◯ ◯

d) ​Incorporating statically-linked libraries
That’s the job of the ​linker​, it incorporates all the required
statically-linked libraries into a self-contained executable.

◯ ◯ ⬤ ◯

e) ​Incorporating dynamically-linked libraries
That’s the point of dynamically-linking things at runtime, it
becomes the loader’s job.

◯ ◯ ◯ ⬤

Q2) Open to Interpretation ​ (11 pts = 2 + 3 + 4 + 2)

Let’s consider the hexadecimal value ​0xFF000003​. How is this data interpreted, if we treat this number as…

a) an array ​A​ of unsigned, 8-bit numbers? Please write
each number in ​decimal, ​assume the machine is ​big
endian​, and write ​A[0]​ on the left,​ ​A[3]​ on the right.

255, 0, 0, 3

SHOW YOUR WORK HERE
Big endian means the big part of the number is
at A[0] (unlike how we would normally store the
number) so that means the number reads left to

right. The first byte is 0xFF, which is 2^8-1 =
255, the second and third are 0x00, which are

zero, and the last is 0x03, which is 3.

b) an IEEE-754 single-precision floating point number?

-(2 ​127​ + 2 ​105​ + 2​104​)

SHOW YOUR WORK
1|111 1111 0|00000...011

exp=254, so number is -1.00...11 x 2​254-127
-2​127​ (1 + 2​-22​ + 2​-23​)
-(2​127​ + 2​105​ + 2​104​)

c) a RISC-V instruction? If there’s an immediate, write it
in decimal.

lb x0 -16(x0)

SHOW YOUR WORK
The opcode is 0b0000011 and the func3 is

0b000, which corresponds to the “lb” instruction.
“lb” is an I-type instruction, so we extract rd =

0b00000, rs1 = 0b00000, Imm =
0b111111110000. The register 0b00000 is the
x0 register. Finally, we calculate the immediate,
taking care to note that immediates are stored in

two’s complement signed form. Negating the
immediate yields 0b000000001111+1 =

0b000000010000 = 16, so the immediate is -16.
We then write the instruction in lb format.

d) a ​(​uint32_t *)​ ​variable ​c​ in ​little-endian​ format,
and we call ​printf((char *) &c)​? If an error or
undefined behavior occurs, write “Error”. If nothing is
printed, write “Blank”. Please refer to the ASCII table
provided on your reference sheet. For non-printable
characters, please write the value in the Char column
from the table. For example, for a single backspace
character, you would write “​BS”.

ETX

SHOW YOUR WORK
Since the data is in little-endian format, the first
byte printed is 0x03, which corresponds to ETX.
The second character is 0x00, which is NULL,
the null terminator. printf doesn’t read past the

first null terminator, so we finish printing after we
write ETX. Note that the VALUE of c is our

number in little-endian format which is why when
we do &c, we are saying that value is a string

when plugged into printf.

Q3) There’s a Dr. Hamming to C you... ​ (14 pts)

We are given an array of ​N​ ​unique​ ​uint32_t​ that
represent nodes in a directed graph. We say there is
an edge between ​A​ and ​B​ if ​A < B​ and the Hamming
distance between A and B is ​exactly 1​. A Hamming
distance of 1 means that the bits differ in 1 (and only
1) place. As an example, if the array were ​{0b0000,
0b0001, 0b0010, 0b0011, 0b1000, 0b1010}​, we
would have the edges shown on the right:

A B
0b0000 0b000​1

0b0000 0b00​1​0

0b0000 0b0​1​00

0b0001 0b00​1​1

0b0010 0b001​1

0b0010 0b​1​010

0b1000 0b10​1​0

Construct an ​edgelist_t​ (specified below) that contains all of the edges in this
graph. Our solution used every line provided, but if you need more lines, just write
them to the right of the line they’re supposed to go after and put semicolons between
them. All of the necessary ​#include​ statements are omitted for brevity; don’t worry
about checking for ​malloc​, ​calloc​, or ​realloc​ returning NULL.​ ​Make sure
L->edges​ has no unused space when L is eventually returned.

edgelist_t *build_edgelist(uint32_t *nodes, int N) {

 edgelist_t *L = (edgelist_t *) malloc (sizeof(edgelist_t));

 L->len = 0;

 typedef struct {

 uint32_t A;

 uint32_t B;

} edge_t;

typedef struct {

 edge_t *edges;

 int len;

} edgelist_t;

 L->edges = ​(edge_t *) malloc (N * N * sizeof(edge_t));

 for (int i = 0; i < N; i++) {

 for (int j = 0; j < N; j++) {
 uint32_t tmp = ​nodes[i] ^ nodes[j];
 if (​(nodes[i] < nodes[j]) && !(tmp & (tmp-1))​) {
 ​L->edges[L->len].A = nodes[i];
 ​L->edges[L->len].B = nodes[j];
 L->len++;

 }

 }

 }
 ​L->edges = (edge_t *) realloc(L->edges, sizeof(edge_t) * L->len);
 return L;

}

Q4) Felix Unger must have written this RISC-V code! ​ (30 pts = 3*10)

1. ​mystery:
2. la t6, loop

3.​ loop: addi x0, x0, 0 ​### nop
4. lw t5, 0(t6)

5. addi t5, t5, 0x80

6. sw t5, 0(t6)

7. addi a0, a0, -1

8. bnez a0, loop

9. ret

What this function does (courtesy of Albert Zhan on piazza with minor edits):

1. mystery(x) entry point => where a0 = x, this is the label to jump to mystery.

2. la t6, loop => t6 register now stores the address of the "loop" (in this case, it

points to an instruction in the text section of memory)

3. addi x0 x0 0 => instruction is executed. Note that addi instruction looks like

 _ _ _ _ _ _ _ _ _ _ _ _ + _ _ _ _ _ + 000 + _ _ _ _ _ + 0010011

 which are imm[11:0], rs1, and rd

4. lw t5, 0(t6) => loads the 32 bits of instruction into t5 register

5. addi t5, t5, 0x80 => adds

 0000 0000 0000 0000 0000 0000 0100 0000

 to the instruction at "loop" -> counting the bits, it adds 1 to rd (so the

instruction on the first iteration becomes "addi x1, x0, 0")

6. sw t5, 0(t6) => stores the updated instruction into memory, so it modifies the

instruction at "loop" -- self modifying the code.

7. addi a0, a0, -1 => decreases x by 1

8. bnez a0, loop => if a0 == 0, continue. Otherwise, go back to the instruction at "loop"

9. ret => jump to ra...

So it modifies the registers by modifying the code at "loop", which in turn modifies the

registers x0, x1, etc.

You are given the code above, and told that you can read and write to any word of memory without error.
The function ​mystery​ lives somewhere in memory, but ​not​ at address ​0x0​. Your system has no caches.

a) At a functional level, ​in seven words or fewer​, what does ​mystery(x)​ do when ​x < 10​?

Resets the first x registers.
Resets register number 0 through x-1.

b) One by one, what are the values of ​a0​ that ​bnez​ sees with ​mystery(13)​ at every iteration? We’ve
done the first few for you. List no more than 13; if it sees fewer than 13, write N/A for the rest.

12, 11, ​10, 9, 8, 7, 6, 5, 4, 3, -1, -2, -3

We’re merrily rolling along, resetting all the registers, when we reset x10 = a0! But then “addi a0,a0,-1” makes
it -1 so it actually never hits the stopping “branch equal to zero” case then! So the bnez sees -1, then -2, then

-3 as the resetter continues along its merry way.

Reset register # on “​nop​” line a0​ before ​addi​ line bnez​ sees ​a0​ value
0 13 12
1 12 11
2 11 10
3 10 9
4 9 8
5 8 7
6 7 6
7 6 5
8 5 4
9 4 3
10 0 -1 (or 2​32​ - 1)
11 -1 -2 (or 2​32​ - 2)
12 -2 -3 (or 2​32​ - 3)

c) How many times is the ​bnez​ instruction seen when ​mystery(33)
is called before it reaches ​ret​ (if it ever does)? If it’s infinity, write ​∞​. ​ ​2​32​ + 10

d) Briefly (two sentences max) explain your answer for part (c) above.

After we get through a0 resetting (and then skipping 0, the stopping condition), we continue resetting all the
registers until we get to t5 (x30). Resetting it doesn’t do anything since we clobber it anyway with the lw
command. The next iteration, the “nop” line will reset t6. So when we lw t5 0(t6=0) we are loading the first
word of memory. We are told this does not cause an error. Then we change it and write it back. We’re no
longer modifying our own program! So we continue to do this merrily until a0 runs down, which is 2​32​ total
iterations (seems like forever, I know). So the total iterations is 2​32​ (after it was -1) and 10 more before that
for 2​32​ + 10 iterations.

Q5) Watch the clock and don’t delay! ​ (30 pts = 2*5 + 10 + 10)

Consider the following circuit: You are given the following information:
● Clk has a frequency of 50 MHz
● AND gates have a propagation delay of 2 ns
● NOT gates have a propagation delay of 4 ns
● OR gates have a propagation delay of 10 ns
● X changes 10ns after the rising edge of Clk
● Reg1 and Reg2 have a clock-to-Q delay of 2 ns

The clock period is 1/(50 * 10^6) s = 20 ns. This means
that if X changes, it changes 10 ns after the clock
positive edge.

 SHOW YOUR WORK BELOW

a) What is the ​longest possible​ ​setup
time​ such that there are no setup time
violations?

4​ ns

Reg 1 longest possible setup time: the path is output of
Reg1 -> NOT -> OR, with a delay of 2 ns + 4 ns + 10 ns
= 16 ns. So 20 - 16 = ​4 ns.
Reg 2 longest possible setup time: the path is X changes
-> AND, with a delay of 10 ns + 2 ns = 12 ns. So 20 - 12
= ​8 ns.
So longest setup time: min(4ns, 8ns) = ​4ns

b) What is the ​longest possible hold
time​ such that there are no hold time
violations?

8​ ns

Reg 1 longest possible hold time: the path is output of
Reg2 -> OR, with a delay of 2 ns + 10 ns = 12 ns.
Reg 2 longest possible hold time: the path is output of
Reg2 -> NOT -> AND, with a delay of 2 ns + 4 ns + 2 ns
= 8 ns.
So longest hold time: min(12ns, 8ns) = ​8ns

c) Represent the circuit above using an equivalent FSM, where X is the input and Q is the output, with the state
labels encoding Reg1Reg2 (e.g., “01” means Reg1=0 and Reg2=1). We did one transition already.

d) Draw the ​FULLY SIMPLIFIED​ (​fewest​ primitive gates) circuit for the equation below into the diagram on the
lower right. You may use the following primitive gates: AND, NAND, OR, NOR, XOR, XNOR, and NOT​.

 ​ ​SHOW YOUR WORK IN THIS BOXut (C ABC B CD)o = + + + (C)+ B + D

out = (Demorgan’s) (ABC) (BCD) (B)C + C + D
out = (Demorgan’s)(A)(B) (B)C + B + C + C + D + C + D
out = (Distributive)A C C C)(B) BC CD(+ B + C + C + D + +
out = (Inverse)A C C)(B) C D(+ B + C + D + B + C
out = (Distributive)BC CC C D BC CC C D C D A + A + A + B + B + B + B + C
out = (Inverse)BC C D C D BC D A + A + B + + C
out = (Distributive)C(A) C D C D DB + 1 + A + B + C
out = (Distributive)(B D D)C + A + B + D
out = (Associative)((B D) A D D))C + B + (+
out = (B)C + D + A+ D
out = (Associative)(A (D D))C + B + +
out = (Inverse)(A)C + B + 1
out = (Identity)C

Q6) RISCV Exam-isim Debug – Single Cycle ​ (12 pts = 2 x 6)

For your CPU project, you followed the datapath diagram we gave you exactly and built a single-cycle CPU.
However, something is not working correctly. ​All instructions besides some of the I-types and SB-types are
working.​ You start by testing with an ​addi a0 a0 -3​ ​instruction. The ​a0​ register initially holds a value of ​7
and all other registers initially hold​ 0​. This instruction is stored in IMEM at address ​0x00000004​. DMEM
reflects the initial IMEM. Undefined ImmSel outputs an I-type imm. You put a probe at the data read from
IMEM and find the instruction is correct. You next put a probe at ​wb​, and see the output is
0b0000_0000_0000_0000_000​1​_0000_0000_0​1​00​ (​0x00001004​).

a) ​ Since the output is incorrect, what errors alone would cause the erroneous behavior? (select all that apply)
⬜ The RegWEn is set to false.
⬛​ The Immediate Generator is not sign extending.
⬜ Read Reg1 and Read Reg2 are flipped.
⬜ The writeback MUX is selecting DMEM.

⬜ PCSel is set to PC + 4.
⬜ The writeback MUX is selecting PC + 4.
⬜ MemRW is set to write.
⬜ BSel is selecting rs2 and not imm.

a) RegWEn does not change the state of wb since this is the only inst.
b) This is the issue!
c) If the two registers were flipped, we would get a different value since we would find we would be using a register with 0
in it thus would be getting back 0xFFC thus these are actually correct.
d) This is not correct since we would be getting the machine code of the current instruction since the correct address
would be 0x4 which is this instruction. Thus this is not a root issue.
e) We would not be able to detect an issue here by looking at wb since this does not affect the wb of the current program.
f) If the write back mux was set to PC + 4, we would receive an output of 0x0000000c thus this is not correct either.
g) MemRW will not change the output of wb. Even if we were outputting the read of the address, it would be incorrect.
h) If BSEL selected RS2, we would have selected t6 which we know has a value of 0 and would have had 0 + 5 which is
not the result we got.

You fix that issue. You then test ​beq x0 a0 label​ but something is still not working. This instruction is at
address ​0xbfffff00​ and ​label​ is at address ​0xbfffff40​. The register ​a0​ holds ​0​ and all other registers
hold ​1​. Assume that we get the correct instruction machine code for ​beq x0 a0 label​ when we probe it.
You put a probe before the PC register and see this incorrect output: ​0xbfffff20​.
Note: All other instruction types are working.

b) ​ What errors alone would cause the erroneous behavior? (select all that apply)
⬜ WBSel is incorrect.
⬜ ImmSel is Incorrect.
⬜ PCSel is set to PC + 4.
⬜ There is an error in the Read Data1/rs1 wire.

⬛​ The ImmGen is not correctly padding w/ extra 0.
⬜ The inputs to the ASel MUX are flipped.
⬜ The inputs to the BSel MUX are flipped.
⬜ Read Reg1 and Read Reg2 are flipped.

a) We do not care about the WBsel since it does not change the input to the pc.
b) The immediate select seems to be correct as the other incorrect immediates are not equal to 0x20. (If you use the
same bits of this instruction and interpret an immediate of other types, you will see none of them are 0x20).
c) We see the PC is not set to 0xbfffff04 thus PC + 4 was not taken.
d) The branch seems to be taken as we are not getting 0xbfffff04
e) Seems like the address is shifted left by one so this is an error.
f) Since we know all registers are 1, the output of the ALU is not possible if these are flipped.
g) Since we know the output of the ALU and that all registers are 1, we know BSel is correct.
h) Even if these were flipped, the branch should not be affected as we are doing an equality of the values.

Q7) ​RISCV Exam-isim Debug – Pipelined ​ (18 pts = 3 + 6 + 3 + 6)

After solving your datapath bug, you decide to introduce the traditional five-stage pipeline into your processor.
You find that your unit tests with single commands work for all instructions, and write some test patterns with
multiple instructions. After running the test suite, the following cases fail. You should assume registers are
initialized to 0, the error condition is calculated in the fetch stage, and no forwarding is currently implemented.

Case 1:​ Assume the address of an array with all different values is stored in ​s0​.

addi t0 x0 1

slli t1 t0 2

add t1 s0 t1

lw t2 0(t1)

Each time you run this test, there is the same incorrect output for ​t2​. All the commands work individually on
the single-stage pipeline.
Pro tip: you shouldn’t even need to understand what the code does to answer this.

a) ​ What caused the failure?
(select ONE)
◯ Control Hazard
◯ Structural Hazard
⬤​ Data Hazard
◯ None of the above

b) ​ How could you fix it? (select all that apply)
⬛​ Insert a nop 3 times if you detect this specific error condition
⬜ Forward execute to write back if you detect this specific error condition
⬜ Forward execute to memory if you detect this specific error condition
⬛​ Forward execute to execute if you detect this specific error condition
⬜ Flush the pipeline if you detect this specific error condition

The issue with the above code is the use of a register (aka we get the value during the decode phase) before
we have written back the value of the previous instruction. This is a data hazard as the data which we want is
not restored to the regfile. This means that we would have the current instruction in the execute phase while
we have the previous in decode. This means that the next cycle, we would have to forward the execute output
to the execute input to make sure the value is the correct, updated one. Inserting a nop when you realize this
error happens will allow the system to do the write back. The other forwards in this problem are necessary for
the given code above. Flushing the pipeline does not work as it means that we will no longer execute the
instructions which were flushed. This means we would just drop instructions which would not get the correct
value instead of just waiting till they can get the correct value.

Case 2:​ ​After fixing that hazard, ​the following case fails:

addi s0 x0 4

slli t1 s0 2

bge s0 x0 greater

xori t1 t1 -1

addi t1 t1 1

greater:

mul t0 t1 s0

When this test case is run, ​t0​ contains ​0xFFFFFFC0​, which is not what it should have been.
Pro tip: you shouldn’t even need to understand what the code does to answer this.

c) ​ What caused the failure?
(select ONE)
⬤​ Control Hazard
◯ Structural Hazard
◯ Data Hazard
◯ None of the above

d) ​ How could you fix it? (select all that apply)
⬛​ Insert a nop 3 times if you detect this specific error condition
⬜ Forward execute to write back if you detect this specific error condition
⬜ Forward execute to memory if you detect this specific error condition
⬜ Forward execute to execute if you detect this specific error condition
⬛​ Flush the pipeline if you detect this specific error condition

The issue with the code above is we do not clear/flush the instructions if the branch determines it is taken.
Remember that we are running on a five stage pipeline CPU which just assumes PC + 4 unless an instruction
says otherwise. This means that we will not determine if the branch is taken until the branch is in the execute
phase. This means that we will have the next two instructions already in the pipeline (one in instruction fetch,
the other in instruction decode). So we have a Control Hazard as we are not executing the correct instructions.
Some ways how to fix it: insert nops if you detect a branch instruction in the instruction fetch stage OR flush
the pipeline if the branch is in the opposite direction of what was predicted. Forwarding data in this case will not
help at all.

Some other notes about this. The [incorrect] value we got was -64. How did we get this? Well if we look at the
code, we see that s0 will hold 4 and t1 will hold 16. Due to the control hazard, this means we will execute and
write back the following two instructions before we execute the mul. This means that we will flip the bits (xori,
note that -1 means all bits are 1 due to twos complement encoding) and add one (addi). This is just twos
complement inversion! This is what causes us to get -16 which multiplied by 4 will give us -64. In a correct
implementation, we would not have executed the xori and addi thus have gotten 64.

Q8) This is for all the money! ​(15 pts = 3 + 7 + 5)
Assume we have a single-level, 1 KiB
direct-mapped L1 cache with 16-byte
blocks. We have 4 GiB of memory. An
integer is 4 bytes. The array is
block-aligned.

a) Calculate the number of tag,

index, and offset ​bits​ in the L1
cache.

#define LEN 2048

int ARRAY[LEN];

int main() {

 for (int i = 0; i < LEN - 256; i+=256) {

 ARRAY[i] = ARRAY[i] + ARRAY[i+1] + ARRAY[i+256];

 ARRAY[i] += 10;

 }

}

T:​22

I:​6

O:​4

SHOW YOUR WORK
Offset: log2(block size) = log2(16) = 4
Index: log2(cache size / block size) = log2(1 KiB / 16) = log2(64) = 6
Tag:
First find total address bits log2(4 GiB) = log2(4 * 2^30) = log2(2^32) = 32
Then 32 - Index - Offset = 32 - 6 - 4 = 22

b) What is the hit rate for the code above?
Assume C processes expressions
left-to-right.

50%
3

SHOW YOUR WORK
Every iteration it’s
ARRAY[i] read MISS
ARRAY[i+1] read HIT
ARRAY[i+256] read CONFLICT→ MISS
ARRAY[i] write CONFLICT→ MISS
ARRAY[i] read HIT
ARRAY[i] write HIT
3 MISSES, 3 HITS. 50% hit rate.

c) You decide to add an L2 cache to your
system! You shrink your L1 cache, so it now
takes 3 cycles to access L1. Since you have
a larger L2 cache, it takes 50 cycles to
access L2. The L1 cache has a hit rate of
25% while the L2 cache has a hit rate of
90%. It takes 500 cycles to access physical
memory. What is the average memory
access time in cycles?

78

SHOW YOUR WORK
AMAT = 3 + ¾ (50 + 1/10 500)
AMAT = 3 + ¾ (50 + 50)
AMAT = 3 + ¾ (100)
AMAT = 3 + 75
AMAT = 78

Q9) We’ve got VM! Where? ​ (15 pts = 2 + 3 + 5 + 5*1)

Your system has a 32 TiB virtual address space with a single level page table. Each page is 256 KiB. On
average, the probability of a TLB miss is 0.2 and the probability of a page fault is 0.002. The time to access the
TLB is 5 cycles and the time to transfer a page to/from disk is 1,000,000 cycles. The physical address space is
4 GiB and it takes 500 cycles to access it. The system has an L1 physically indexed and tagged cache which
takes 5 cycles to access and a hit rate of 50%. On a TLB miss, the MMU checks physical memory next.

a) How many bits is the Virtual Page
Number?

 ​27​ bits

SHOW YOUR WORK
Number of reachable virtual addresses: log2(32 TiB) = 45
Bits needed to reach all addresses in a page: log2(256 KiB) =
18
So the virtual page number bits are: 45 - 18 = 27

b) What is the total size of the page table (in
bits​), assuming we have ​no​ permission
bits or any other metadata in a page
table entry, just the translation?

 ​14 x 2​27​ bits

SHOW YOUR WORK
We need to figure out the number of bits in the physical page
number. It is the same method except we use the physical
address space:
Number of reachable physical addresses: log2(4 GiB) = 32
So PPN size is 32 - 18 = 14. We do not have any metadata
bits so the total number of bits in a PTE is 14. To figure out
how many entries we need, we need to look at the total
number of virtual page numbers we have = 27. This means
we need ​2​27​ entries in the page table. This means we need a
total of 14 x ​2​27​ bits in our page table.

c) What is the average memory access time
(in cycles) for a single memory access
for the current process? Assume the
page table is resident in DRAM.

 ​760​ cycles

SHOW YOUR WORK
Translation AMAT = 5 + ⅕(500 + 2/1000(1M))
= 5 + ⅕(500 + 2000)
= 5 + ⅕(2500)
= 5 + 500
= 505
plus
Data access AMAT = 5 + 50% (500)
= 5 + 250
= 255
AMAT (overall) = 505 + 255 = 760

d) Which of the following, if any, ​must be done​ when we switch to a different process?
Do ​not​ select any option that is unnecessary.

 Yes No

1) Update page table address register ⬤ ◯

2) Evict pages for the previous process from RAM ◯ ⬤

3) Clear TLB dirty bits ◯ ⬤

4) Clear cache valid bits ◯ ⬤

5) Clear TLB valid bits ⬤ ◯

Q10) Parallelism and Potpourri ​ (30 pts = 6 + 4 + 3 + 3 + 3 + 3 + 4 + 4)

a) What are all the possible values of ​x​ and
y​ ​after execution has completed​ if the
code were run on two cores concurrently?
x:​ ​⬜ ​0 ​⬜ ​1 ​⬛​ ​2 ​⬛​ ​3 ​⬜ ​4
 ​⬜ ​5 ​⬜ ​6 ​⬜ ​7 ​⬜ ​8 ​⬜ ​9

y:​ ​⬜ ​0 ​⬜ ​1 ​⬜ ​2 ​⬛​ ​3 ​⬛​ ​4
 ​⬛​ ​5 ​⬛​ ​6 ​⬛​ ​7 ​⬜ ​8 ​⬜ ​9

int x = 1;
int y = 1;
#pragma omp parallel

{

 x += 1;

 y = x + y;

}

SHOW YOUR WORK
x: Both cores could see x = 1 for the first line
-> x will end up as 2; otherwise, one core will
set x = 2 first, and the other core will set x = 3

y: The key point here is that the two cores are
updating shared, global variables -- these
updates can occur throughout execution!
Let’s call core i’s execution of line j “ij” -> this
results in 4 lines executed (11, 12, 21, 22).
Execution order (core 1 and 2 could be flipped
for equivalent results):
(11, 21 together), (12, 22 together): y -> 3
(11, 21 together), 12, 22: y -> 5
11, 21, (12, 22 together): y -> 4
11, 12, 21, 22: y -> 6
11, 21, 12, 22: y -> 7

Another way to look at this is to realize for
each thread when it executes the line “y = x +
y”, x equals either 2 or 3. Since each thread
adds either +2 or +3 to y, both threads
together add +4, +5, or +6.

Additionally, we know that if both threads read
y before writing back to it, only one thread will
actually properly increment it, giving us +2 or
+3​. .

b) A Job involves four Tasks, and the % of time
spent in each Task is shown in the table. If we
buy accelerators that speed up ​f​ by 2x and ​k
by 8x what’s your ​total speedup​?

4x

Task % SHOW YOUR WORK
Old: 10+4+6+80
New: 5+4+6+10
Old/New = 100/25 = 4x

f 10% → 2x
g 4%
h 6%
k 80% → 8x

c) Which of the following were discussed in the MapReduce lecture? (select all that apply)
⬜ Workers specialize: A “map” worker that finishes their map task early are ​only​ given a new map task.
Map workers can be reassigned map or reduce tasks
⬛​ The system automatically reassigns tasks if a worker “dies”, providing automatic fault-tolerance.
⬜ MapReduce was specifically designed for custom high-end machines and custom high-end networks.
Commodity hardware and networks
⬜ Hadoop was better than Spark, since Hadoop offered better performance, lazy evaluation, and interactivity.
vice-versa

d) Virtual memory allows us to: (select all that apply)
⬛​ Pretend that programs do not have to share the address space with other programs.
⬛​ Have more stable and secure computer systems.
⬜ Divide the entire address space into 4 sections specifically for static, code, heap, and stack.
Nope, that can happen with or without VM
⬜ Provide the illusion that the computer has access to storage the size of DRAM but at the speed of disk.
vice-versa

e) Which of the following were discussed in Prof. David Patterson’s lecture? (select all that apply)
⬛​ The power demands of machine learning are growing 10x per year; Moore’s Law is only 10x in 5 years.
⬜ The Tensor Processing Unit has a similar performance per watt to a CPU on production applications.
TPU blows away CPU on performance/watt
⬜ The marketplace has decided: Open ISAs (e.g., RISC-V) are better than proprietary ones (e.g., ARM).
Marketplace /will/ decide, it hasn’t yet (as it has for RISC vs CISC)
⬜ Domain Specific Architectures achieve incredible performance but just for one application, like ASICs.
For one /domain/, there are many applications in one domain

f) Which of the following were discussed in James Percy’s GPU lecture? (select all that apply)
⬜ A square is the base shape used when rendering scenes.
Triangle (since it’s planar)
⬜ The GPU achieves its speed because all of the threads run different programs on the same data.
The same program on different data (like map square over a list, or 3D project all these points)
⬜ A GPU has many more cores than a CPU and operates at a higher frequency.
More cores, but lower frequency (otherwise we couldn’t cool it!)
⬛​ When pixels along polygon edges are different between new generations of GPUs, the team investigates it.
Yep, what was it that changed?

g) You have an SSD which can transfer data in 32-byte chunks at a rate of 64 MB/second. No transfer can be
missed. If we have a 4GHz processor, which takes 200 cycles for a polling operation, what fraction of time
does the processor spend polling the SSD drive for data? Leave your answer in the box provided as a
percentage.

10%

SHOW YOUR WORK
64 MB/sec / 32 B/poll = 2M polls/sec
2M polls/sec * 200 cycles/poll = 400M cycles/sec
4 GHz clock ⇒ 4000M cycles/sec; 400M c/s / 4000M c/s = 10%

h) You are designing a 64-bit ISA for a simplified CPU with 3 bit-fields: ​immediate | register | opcode​.
You reserve enough of the rightmost bits to handle 1,500 opcodes, and enough of the leftmost bits to encode
unsigned numbers up to 500 trillion. What’s the greatest number of registers can you have?

16
SHOW YOUR WORK

1500 opcodes requires 11 bits (2048)
500 trillion requires 49 bits (512 Tebi)

64 - (11 + 49) = 4 bits for registers
2​4​=16

	CS61C Fall 2019 Final Solutions
	Final Clarifications
	CS61C Fall 2019 Final Solutions

