NAME:

ID # :

# 1	# 2	# 3	# 4	# 5	#6	#7	TOTAL
0	15	10	10	10	0	19	77
8	15	12	12	10	8	12	77

Instructions:

- 1 Write your name and student ID number.
- 2 Read the questions carefully.
- 3 This exam has 7 questions worth 76 points.
- 4 Please write your solution clearly.

Problem # 1 $(1 \times 8 = 8 \text{ points})$

For each statement, state whether the claim is True or False. Circle you answer. No explanation is necessary.

-1 points for incorrect answers so guessing is not advised.

1	True or False	First-order linear systems can have an oscillatory free-response.
2	True or False] If two square matrices A and B have the same eigenvalues, then $A = B$.
3	True or False	Proportional control can always stabilize a first-order LTI plant.
4	True or False	Anti-wind up strategies are needed when using pure proportional control.
5	True or False] If you have a bad plant model, feedback linearization is a bad idea.
6	True or False] Increasing the proportional gain k_p , reduces the time constant.
7	True or False	Suppose the realization $\Sigma(A, B, C, D)$ is stable. Then A is invertible.
8	True or False] The steady-state response of a stable linear system due to a sinusoidal input depends on the initial conditions.

Problem # 2 (2 + 2 + 2 + 3 + 3 + 3 = 15 points)

(a) Give any two reasons why state-space methods are very powerful.

Reason 1:	Reason 2:

(b) What is the single most important reason to use integral control?

Answer:

(c) When should we use anti-windup control strategies?

Answer:

(d) Find the eigenvalues of the matrix

$$A = \left[\begin{array}{ccc} p & 1 & 0 \\ 0 & q & 0 \\ 1 & 1 & r \end{array} \right]$$

$\lambda_1 =$	$\lambda_2 =$	$\lambda_3 =$

(e) Calculate $\sin(A)$ for the matrix

$A = \left[\begin{array}{c} \pi \\ 0 \end{array} \right]$	$\begin{bmatrix} 100\\ 2\pi \end{bmatrix}$	
--	--	--

(f) Find the DC gain matrix of the transfer function

$$P(s) \sim \begin{bmatrix} -1 & 0 & | & 1 & 1 & 0 \\ 0 & -1 & 0 & 1 & 1 \\ \hline 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Answer:

Problem # 3 (4 + 4 + 4 = 12 points)

(a) Consider the feedback system shown below.

For what values of k is this feedback system stable?

Answer:

(b) Consider the plant with transfer function

$$H(s) = \frac{s^2 + cs + d}{s^2 + 4s + 4}$$

We apply the input $u(t) = \sin(2t)$. The steady-state response is zero. Find c and d.

(c) Consider the feedback system shown below

Find the transfer function from u to y.

Answer:		

Problem #4 (12 points)

Below are 6 different realizations.

The unit-step response, starting from zero initial conditions at t = 0 for these models are shown on the next page. Match these step responses with the models by entering the letters **A** through **F** in the boxes provided.

No partial credit. No explanations are necessary. Correct answers get 2 points, incorrect answers get -1 points.

Problem # 5 (5+5 = 10 points)

Please show your work to receive full credit.

(a) Consider the feedback system shown below.

Find a realization for the transfer function H(s) from u to y, i.e. find matrices A, B, C, D such that

$$H(s) \sim \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right]$$

Use the state variables

$$x = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$

where x_1 and x_2 are the signals shown.

A =	B =	C =	D =

(b) Consider the feedback system shown below. Suppose K(s) has state-space realization

$$K(s) \sim \left[\begin{array}{c|c} F & G \\ \hline H & 0 \end{array} \right]$$

Compute any state space realization for the transfer function H(s) from u to y, i.e. find matrices A, B, C, D such that

$$H(s) \sim \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right]$$

A =	B =	C =	D =

Problem # 6 (2 + 2 + 2 + 2 = 8 points)

Consider the LTI system with input u and output y modeled by

y(t) = u(t-2)

- (a) Find the transfer function H(s) from u to y.
- (b) Plot the unit step response.
- (c) Plot the magnitude frequency response of H(s).
- (d) Plot the phase frequency response of H(s).

Use the graph sheets provided below.

To make it easier, the scales are linear (not log-frequency or decibels). No partial credit. No explanations are necessary.

t (sec)

Problem # 7 (12 points)

For what values of g is the feedback system shown below stable? Your answer should be in the form

 $g_{\min} < g < g_{\max}$

$g_{\min} =$	$g_{\max} =$