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3. High Speed Digital Communication (16 pts)

In this problem, we will analyze a simplified model of a USB communication link and show that there is a
limit to how quickly you can transfer data.

As Figure 1 illustrates, the transmitter is a CMOS inverter, whose input is driven with the voltage source Vin

representing the data to be sent over the link. The USB cable connects the transmitter to the receiver. The
link successfully transfers data when the voltage at the output of the USB cable crosses the threshold of the
receiver’s inverter, thereby flipping the receiver output voltage Vout,Receiver.

Vin,Transmitter

VDD

Vout,Receiver

VDD

USB Cable

Figure 1: A USB communication link

To simplify, we will model the transmitter’s inverter as a resistance Rinv and use V̄in(t) as the digitally flipped
voltage that represents the ideal output of the transmitter’s inverter. The receiver inverter is modeled as an
input capacitance Cinv. The cable is modeled as an RC system whose Rwire and Cwire values grow as the
cable length increases. A diagram of the circuit model to be used in this problem is shown in Figure 3.

−
+ V̄in

Rinv Rwire

Cwire Cinv

Vout

Figure 2: Simplified circuit model for a USB communication link

(a) (2 pts) If V̄in = 0V for all t < 0 what is Vout at time t = 0? This will serve as the initial condition for
the rest of the problem.
Solutions: Since V̄in = 0V for a long time, we expect voltages and currents in the system to stop
changing. If dVout

dt = 0, that means the currents through the capacitors are zero. By KCL, that means
that there is no current through the resistors, and so Vout = V̄in = 0
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(b) (5 pts) Write the differential equation for the voltage Vout(t) as a function of V̄in(t) for t ≥ 0 in
terms of Rinv,Cinv,Rwire, and Cwire.
Solutions: Since the resistors are in series, they can be combined into a single resistance R =
Rinv +Rwire. Since the capacitors are in parallel, they can be combined into a single capacitance C =
Cinv +Cwire We will use this simplified model for the rest of this solution.

−
+ V̄in

Rinv +Rwire

Cwire +Cinv

Vout

Figure 3: Simplified circuit model for a USB communication link

Vin =VR +Vout

By KCL, the current through the resistor must equal the current through the capacitor:

VR = ICR =C
dVout

dt
R

Vin = RC
dVout

dt
+Vout

dVout

dt
=

Vin−Vout

RC
dVout

dt
=

Vin−Vout

(Rinv +Rwire)(Cinv +Cwire)
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(c) (5 pts) For the rest of this problem, for ease of computation (since you don’t have calculators), assume
that Rinv = 1kΩ, Rwire = 3kΩ, Cwire = 24pF, and Cinv = 1pF. (Here, pF = 10−12F and kΩ = 103Ω.)
Now assume that V̄in for time t ≥ 0 is a piecewise-constant voltage source. V̄in rises to 1V at t = 0 and
then falls back down to 0V at some time t = Tbit . Write an exact expression for Vout(t) during the
time period 0≤ t < Tbit .
Your expression should be an explicit formula. No integrals are allowed to remain for full credit.
(HINT: Recall that x0eλ t +

∫ t
0 eλ (t−τ)u(τ)dτ is the unique solution of d

dt x(t) = λx(t)+u(t) with initial
condition x(0) = x0. You also might want to draw V̄in(t) to help yourself.)
Solutions: Since we know that the input is a constant 1V during the period 0 ≤ t ≤ Tbit , we can
simplify the differential equation:

dVout

dt
=− Vout −1

(Rwire +Rinv)(Cwire +Cinv)

dVout

dt
= λ (Vout −1)

Where, λ =− 1
(Rwire+Rinv)(Cwire+Cinv)

=−107

We can perform a change of variables to simplify the differential equation, x(t) =Vout(t)−1

d
dt

x(t) = λx(t)

x(t) = x(0)eλ t

Solving for the initial condition:

x(0) =Vout(0)−1 =−1

Transforming back to standard variables:

Vout(t) = 1+ x(t) = 1− eλ t = 1− e−107t
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(d) (4 pts) Sketch Vout(t) during the time period 0 ≤ t < Tbit , clearly marking the initial voltage and
the final voltage.
Solutions:
The plot below shows an example of Vout(t) from 0 to Tbit in the case where Tbit = RC. Note that since
we did not specify the value of Tbit , your plot may extend closer or farther from the asymptotic value of
1V , as long as the relative shape and slope is consistent with Vout(t) = 1− e−107t . The starting voltage
of the plot must be consistent with the initial condition:

Vout(0) = 0V

The final voltage of the plot can be computed in general by plugging Tbit into the expression from the
previous part:

Vout(Tbit) = 1− e−107Tbit

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Time/Tbit

V o
ut
(t
)

Vout(t) vs. Time

4. RLC Circuits (30 pts)
Consider the following circuit:

−
+Vin

R1 L

C R2

+

−

VC

If we define the state vector~x(t) =
[
VC

IL

]
, standard circuit analysis would reveal that this circuit is governed

by this system of differential equations:

d
dt

[
VC(t)
IL(t)

]
=

[
− 1

R2C
1
C

− 1
L −R1

L

]
︸ ︷︷ ︸

A

[
VC(t)
IL(t)

]
+

[
0
1
L

]
︸︷︷︸
~b

Vin(t).
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For this problem generally, it may help to recall the standard formula for a 2×2 matrix inverse:[
a b
c d

]−1

=
1

ad−bc

[
d −b
−c a

]

(a) (12 pts) Suppose that we choose to drive the circuit with a Vin(t) that is a sinusoidal waveform at the
angular frequency ω radians/sec. Let us consider the voltage VC(t) across the capacitor C as our output
voltage Vout(t). What is the transfer function of this circuit, namely H( jω) = Ṽout

Ṽin
where Ṽin is the

input voltage phasor at angular frequency ω and Ṽout is the output voltage phasor at that same angular
frequency ω .
Your answer should be symbolic in terms of the R1,L,C, and R2 along with j =

√
−1 and ω . You

don’t have to simplify this to look nice.
Solutions: We know that the transfer function is determined by an impedance voltage divider.
With the equations ZR = R, ZL = jωL, ZC = 1

jωC , we get:

Zin( jω) = ZR1 +ZL +Z(C||R2) = R1 + jωL+

1
jωC R2

1
jωC +R2

Then simplifying a little for the next part:

Zin( jω) = (R1 + jωL)+
R2

1+ jωCR2
=

(1+ jωCR2)(R1 + jωL)+R2

1+ jωCR2

Namely,

Vout( jω) =Vin( jω)

R2
1+ jωCR2

(1+ jωCR2)(R1+ jωL)+R2
1+ jωCR2

H( jω) =
Vin( jω)

Vout( jω)
=

R2

(1+ jωCR2)(R1 + jωL)+R2
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[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s
main page.]
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(b) (8 pts) Assume that initially the state is at rest, with the capacitor charged to 1V , so ~x(0) =
[

1
0

]
.

Consider the values C = 1,L = 1,R1 = 1,R2 = 1. For convenience, we have plugged in the values
as well as computed eigenvalues and eigenvectors for you. This yields an A matrix with eigenvalues
λ1 =−1+ j and λ2 =−1− j.

d
dt

[
VC(t)
IL(t)

]
=

[
−1 1
−1 −1

]
︸ ︷︷ ︸

A

[
VC(t)
IL(t)

]
+

[
0
1

]
︸︷︷︸
~b

Vin(t), and eigenvectors~vλ=−1+ j =

[
− j
1

]
,~vλ=−1− j =

[
j
1

]

For convenience, please note that if V = [~vλ=−1+ j,~vλ=−1− j], then V−1 =

[
− j j
1 1

]−1

=

[ j
2

1
2

− j
2

1
2

]
.

Change coordinates of this differential equation to be in terms of~̃x(t) = V−1~x(t) and the input Vin(t).

i.e. give an equation in the form d
dt
~̃x(t) = Ã~̃x(t)+~̃bVin(t).

What is the matrix Ã, the vector~̃b and the intial condition~̃x(0)?
Solutions: Remember that Ã =V−1AV is a matrix whose diagonal elements are the eigenvalues:

Ã =

[
−1+ j 0

0 −1− j

]
In order to convert b and~x(0) to the eigenbasis, we need to multiply by V−1:

~̃b =V−1b

~̃b =

[ j
2

1
2

− j
2

1
2

][
0
1

]
~̃b =

[1
2
1
2

]

~̃x(0) =V−1~x(0)

~̃x(0) =
[ j

2
1
2

− j
2

1
2

][
1
0

]
~̃x(0) =

[ j
2
− j

2

]
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(c) (10 pts) For the problem as stated in the previous part, solve for the transient solution~x(t) given the
specified initial condition under the assumption that Vin(t) = 0 for all t ≥ 0.
Your solution should be expressed in terms of real functions of time t. No j’s are permitted in your
final answer for full credit.

Solutions: Since Vin(t) = 0 for all t ≥ 0, we can ignore the~̃bVin(t) term in the differential equation:

d
dt
~̃x(t) = Ã~̃x(t)

Plugging in for Ã found in the previous part:

d
dt

x̃[0](t) = (−1+ j)x̃[0](t)

d
dt

x̃[1](t) = (−1− j)x̃[1](t)

Each equation can be solved for independently:

x̃[0](t) = x̃[0](0)e(−1+ j)t

x̃[1](t) = x̃[1](0)e(−1− j)t

Plugging in for the initial conditions found in the previous part:

x̃[0](t) =
j
2

e(−1+ j)t

x̃[1](t) =− j
2

e(−1− j)t

To convert back to the original basis~x(t) =V~̃x(t):

~x(t) =
[
− j j
1 1

][ j
2 e(−1+ j)t

− j
2 e(−1− j)t

]

~x(t) =
[ 1

2 et(e jt + e− jt)
j
2 e−t(e jt − e− jt)

]

~x(t) =
[

e−tcos(t)
−e−tsin(t)

]

5. Transfer Functions and Filters (18 pts)

(a) (6 pts) Identify each of the Bode Plots, circuits, and transfer functions as either a lowpass or
highpass filter. Indicate your answer by filling in the appropriate bubble.
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Table 1: Table to be filled in for your answers. Fill in bubbles.

Lowpass Highpass
Bode Plot A © ©
Bode Plot B © ©

Circuit C © ©
Circuit D © ©

Transfer Fn E © ©
Transfer Fn F © ©

103 104 105 106 107 108 10910−4

10−3

10−2

10−1

100

101

ω

|H
(

jω
)|

Bode Plot A (ωc = 106)

103 104 105 106 107 108 10910−4

10−3

10−2

10−1

100

101

ω

|H
(

jω
)|

Bode Plot B (ωc = 106)

−

+

R

L

+

−

Vi Vo

Circuit C: H( jω) = Ṽo
Ṽi

−

+

L

R

+

−

Vi Vo

Circuit D: H( jω) = Ṽo
Ṽi

Transfer function E: HE( jω) =

jω
ωc

1+ jω
ωc

| Transfer function F: HF( jω) =
1

1+ jω
ωc

Solutions:

Lowpass Highpass
Graph A B
Circuit D C

Equation F E
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(b) (6 pts) Consider the three filters in cascade below, with unity-gain op-amp buffers in between them:

−

+

−

+

H1 H2 H3
Vin Vout

Figure 5: Three filters cascaded via unity-gain op-amp buffers

Suppose that at some frequency ω0 radians/sec we know that:

H1( jω0) = 3e j π

4 H2( jω0) =
1
2

e− j π

3 H3( jω0) = 4e j 5π

6

If Vin(t) = 2sin
(
ω0t + π

2

)
:

What is the phasor for the input voltage: Ṽin?

What is the phasor for the output voltage: Ṽout?

What is Vout(t)?
Solutions: First we find the phasor representation of Vin(t). Remember that sin(t + π

2 ) = cos(t):

Vin(t) = 2cos(ω0t)

Ṽin = 1e j0 = 1

Then to get the overall transfer function, multply all the individual transfer functions. This is the same
as multplying the phasor magnitudes and adding the phases:

Htotal =
Vout

Vin
= H1 ·H2 ·H3 = 6e j 3π

4

From phasor analysis, Ṽout = HtotalṼin = 6e j 3π

4

Finally we convert back to the original time domain:

Vout(t) = 12cos(ω0t +
3π

4
)

This can be done instantly since 12 is twice of 6. And the phase shift 3π

4 is the phase of the output
voltage phasor. We know this from the equation for cosine: cosθ = 1

2 e jθ + 1
2 e− jθ .
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(c) (6 pts) Suppose there is an interfering signal at 5GHz that you need to get rid of, while passing through
your WiFi signal at 2.4GHz. You have access to the following six components (two capacitors, two
inductors, and two resistors) which should each only be used exactly once.

C = 66.3pF C = 31.8pF L = 31.8pH L = 66.3pH R = 1Ω R = 0.1Ω

Assign each component to the elements RA, RB, CA, CB, LA, LB in the RLC circuits (‘A’ and ‘B’
below), so that the transfer function of each circuit corresponds to its matching Bode plot. Write
values next to components. Hint: the dashed line on the plot is at 1√

2
. It might be useful to think

about what its intersections with the main curve represent.
For your convenience, here are some calculations that may or may not be relevant:

2.4×109

2π
= 382×106 2.4×109×2π = 15.08×109 5.0×109

2π
= 795×106 5.0×109×2π = 31.4×109

1
382×106 = 2.62×10−9 1

15.08×109 = 6.63×10−11 1
795×106 = 1.26×10−9 1

31.4×109 = 3.18×10−11

109 101010−2

10−1

100

101

f Hz

|H
(

jω
)|

RLC Filter A

109 101010−2

10−1

100

101

f Hz

|H
(

jω
)|

RLC Filter B

−

+

LA
CA

RA

+

−

Vi Vo

Circuit A: H( jω) = Ṽo
Ṽi

−

+

RB

LB

CB

+

−

Vi Vo

Circuit B: H( jω) = Ṽo
Ṽi

Solutions: Based on the transfer function plots, RLC Filter A is a band-pass filter centered around
2.4GHz and RLC Filter B is a notch filter centered around 5GHz.
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For the band-pass filter, the peak is located at the frequency where the sum of the impedances of the
inductor and capacitor becomes 0. The same is true for the center of the notch-filter.

ZL +ZC = 0

jωnL− j
ωnC

= 0

ω
2
n L =

1
C

ωn =
1√
LC

Since the notch frequency is slightly more than 2x the band-pass frequency, the
√

LC value of the band-
pass filter must be around 2x bigger than that of the band pass filter. Thus we will choose the pair of
larger L and C values for the band-pass filter, each of which are each roughly 2x larger: LA = 66.3pH
and CA = 66.3pF . This can be confirmed by using the provided calculations. Since each component
can only be used once, the notch filter must use: LB = 31.8pH and CB = 31.8pF
From looking at the dotted lines on the plots, it is clear that the notch filter has much larger bandwidth
than the band-pass filter. Lets evaulate the transfer function of the band-pass filter to determine the
relationship between resistance and the cutoff frequencies. From the voltage divider formula:

H( jω) =
RA

RA + j(ωL− 1
ωC )

The magnitude of this transfer function will hit 1√
2

when the magnitude of the imaginary component
of the denominator equals RA. Clearly, a larger RA leads to larger cutoff frequency. Alternatively, you

could recall that the bandwidth of a band-pass filter is
√

R
L . Since the band-pass filter has a much

smaller bandwidth than the notch-filter, we will choose the smaller resistance RA = 0.1Ω and RB = 1Ω
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[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]

6. Separation of Variables and Uniqueness (20 pts)

Recall that the classic scalar differential equation

d
dt

x(t) = λx(t) (1)

with initial condition x(0) = x0 6= 0 has the unique solution x(T ) = x0eλT for all T ≥ 0.

(Note: to avoid variable-name confusion here, we are using T as the argument of the solution x(T ).)

The separation of variables approach to getting a guess for this problem would proceed as follows:

d
dt

x(t) = λx(t) (2)

dx
dt

= λx (3)

dx
x

= λdt separating variables to sides (4)∫ x(T )

x0

dx
x

=
∫ T

0
λdt integrating both sides from where they start to where they end up (5)

ln(x(T ))− ln(x0) = λT (6)

ln(x(T )) = ln(x0)+λT (7)

x(T ) = x0eλT exponentiating both sides (8)

and in this case it gave a good guess. Of course, this guess needed to be justified by a uniqueness proof,
which you did in the homework.

This exam problem asks you to carry out this program for the time-varying differential equation:

d
dt

x(t) = λ (t)x(t) (9)

with initial condition x(0) = x0 6= 0. You can assume that λ (t) is a nice continuously differentiable function
of time t that is bounded.

© UCB EECS 16B, Fall 2019. All Rights Reserved. This may not be publicly shared without explicit permission. 14



Midterm 1 @ 2019-10-22 17:30:28-07:00

(a) (8 pts) Use the separation of variables approach to get a guess for the solution to the differential
equation (9) — namely d

dt x(t) = λ (t)x(t) — with initial condition x(0) = x0 6= 0. Show work and
give a formula for x(T ) for T ≥ 0.
(HINT: It is fine if your answer involves a definite integral.)
(If you can’t solve this for a general λ (t), for partial credit, feel free to just consider the special case
of λ (t) =−2− sin(t) and give a guess for that case.)
(You can also get full credit if you follow the approach from discussion section of taking a piecewise-
constant approximation and then taking a limit, but that might involve more work.)
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Solutions:
d
dt

x(t) = λ (t)x(t) (10)

dx
dt

= λ (t)x (11)

dx
x

= λ (t)dt separating variables to sides (12)∫ x(T )

x0

dx
x

=
∫ T

0
λ (t)dt integrating both sides from where they start to where they end up

(13)

ln(x(T ))− ln(x0) =
∫ T

0
λ (t)dt (14)

ln(x(T )) = ln(x0)+
∫ T

0
λ (t)dt (15)

x(T ) = x0e
∫ T

0 λ (t)dt exponentiating both sides and folding constants (16)

which is a pretty reasonable guess since it definitely agrees with the correct answer if λ (t) was just a
constant.
For the special case of λ (t) = −2− sin(t), we know that

∫ T
0 λ (t)dt =

∫ T
0 −2− sin(t)dt = −2T +

cos(T )−1 and so x(T ) = x0e−2T+cos(T )−1 is our guessed solution.
It turns out that the same limiting argument invoking piecewise-constants and Reimann sums that was
done in discussion would also have resulted in the same guess.

(b) (12 pts) Prove the uniqueness of the solution — i.e. that if any function solves differential equation
(9) — namely d

dt x(t) = λ (t)x(t) — with the given initial condition x(0) = x0 6= 0, then it must in
fact be the same as your guessed solution everywhere for T ≥ 0.
(HINT: A ratio-based argument might be useful. You don’t actually need to know the exact form of
your guessed solution to carry out much of this argument, but you do need the fact that it is never zero
and that it solves (9).)
Solutions: First, we need to know how our guessed solution behaves.

Plugging in the intial condition into x(T ) = x0e
∫ T

0 λ (t)dt , we get x(0) = x0e
∫ 0

0 λ (t)dt , we get x(0) = x0e0 =
x0.
Before plugging into (9), we first write the solution using t instead of T and changing the dummy
variable for the integral to be τ: x(t) = x0e

∫ t
0 λ (τ)dτ .

Plugging into (9), we get

d
dt

x(t) =
d
dt

x0e
∫ t

0 λ (τ)dτ (17)

= x0λ (t)e
∫ t

0 λ (τ)dτ (18)

= λ (t)x(t) (19)

which satisfies the differential equation.
Solutions: Consider any candidate solution y(t) to (9) that satisfies the given initial condition y(0) =
x0 6= 0. This means that d

dt y(t) = λ (t)y(t) for all t ≥ 0.

We know that our guessed solution x(t) = x0e
∫ t

0 λ (τ)dτ is never zero because x0 6= 0 and the finite integral
of a bounded function cannot be −∞. This means that we are free to consider the ratio z(t) = y(t)

x(t) . We

know that z(0) = y(0)
x(0) =

x0
x0
= 1.
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Looking at the derivative of z(t), we have:

d
dt

z(t) =
d
dt

y(t)
x(t)

(20)

=
( d

dt y(t))x(t)− y(t) d
dt x(t)

(x(t))2 (21)

=
λ (t)y(t)x(t)− y(t)λ (t)x(t)

(x(t))2 (22)

= 0. (23)

Since d
dt z(t) = 0 for all t ≥ 0, it is not changing, and is therefore a constant. This means that z(t) =

z(0) = 1 which implies that y(t)
x(t) = 1 which means that y(t) = x(t), thereby establishing uniqueness for

our guessed solution.
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[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]

© UCB EECS 16B, Fall 2019. All Rights Reserved. This may not be publicly shared without explicit permission. 18


