UC Berkeley CS61C Fall 2018 Final Exam Answers

A mystery, byte-addressed cache has Tag:Index:Offset (T::O) = 9:4:3. For the computer,

a) What is the virtual address space? (select ONE) (O8-bit (O16-bit (O32-bit (O64-bit @Not enough info!
Thanks to Virtual Memory (assumed standard in today’s computers, wasn’t always true), the virtual address
space is not connected to the cache size or TIO width. When people casually say “it's a 32-bit machine”, that
means the virtual address space.

b) What is the physical address space? (select ONE) (O8-bit @ 16-bit (O32-bit (O64-bit (ONot enough info!
Yep, T+1+0 = physical address size, here 16 bits.

Different caches can have the same T:I:0! Let’s explore that in parts (b) and (c) below.

c) How could we maximize cache size, while preserving T:[:0=9:4:37? (select ONE per row)

Associativity | O 2-way set O Direct Mapped | @ 8-way set O 4-way set
Block Size | O 4 bytes @ 8 bytes (O 12 bytes O 3 bytes
of Blocks | O 8 blocks O 16 blocks O 4 blocks @ 128 blocks

We start with block size, which is a function of the offset (3 bits), so that’s 8 bytes regardless of cache
associativity configuration. Since we have 4 index bits, we use the 2* = 16 indices to index into a set of things,
here the most we can have (if we want to maximize cache size), which is 8-way set associative.

So the number of total blocks is 2* sets/cache * 2° blocks/set = 27 blocks/cache = 128 blocks in this 1 cache.

d) How could we minimize cache size, while preserving T:1:0=9:4:37? (select ONE per row)

Associativity | O 2-way set @ Direct Mapped | O 8-way set O 4-way set
Block Size | O 4 bytes @ 8 bytes (O 12 bytes O 3 bytes
of Blocks | O 8 blocks @ 16 blocks O 32 blocks O 64 blocks

Similarly, we start with block size, which is a function of the offset (3 bits), so that’s 8 bytes regardless of cache
associativity configuration. Since we have 4 index bits, we use the 2* = 16 indices to index into a set of things,
here the least we can have (to minimize cache size), which is 1-way set associative, or direct mapped.

So the number of total blocks is 2* sets/cache * 2° blocks/set = 2* blocks/cache = 16 blocks in this 1 cache.

e) Now we’re working with a write-back, 1024B direct-mapped cache that has 8B blocks. We're interested in
seeing if we can lower our AMAT if our memory access pattern is iterating through an array with a fixed stride.
The majority of our misses are conflict misses, and we have an inconsequential amount of compulsory and
capacity misses. For each of the following modifications, mark how it changes each component of AMAT (Hit
Time, Miss Penalty, Miss Rate) and the overall Hardware Complexity.

Modification Hit Time Miss Penalty | Miss Rate | Hardware Complexity
Change block size from 8B to 168, OIncrease | @ Increase | O Increase | O Increase
but keep the cache size the Same O Decrease | O Decrease | @ Decrease | O Decrease
P @ No effect | O Noeffect | (O No effect | @ No effect

@ ncrease | O Increase O Increase | @ Increase
O Decrease | O Decrease | @ Decrease | O Decrease
@ No effect | @ No effect | O No effect | O No effect

A block size change simply involves changing the aspect ratio of the cache (so height [rows, indices, sets] *
columns [blocks size controlled by offset] = constant) -- doubling the width is halving the height. So you’re
giving a bit from | to O. Doesn’t affect hit time (the time to a cache hit ... i.e., the time to determine if a cache
hits, and the time to get the data back to the registers), but does increase miss penalty (how much data you
have to bring from the lower level of the cache) and does reduce the miss rate because of the benefits of
spatial locality (but not forever, you'll recall when we get TOO few blocks the miss rate actually goes up
because of ping pong and other effects). Doesn’t affect the hardware complexity in terms of needing a new
comparator or logic block or anything else since the cache is still doing the same work.

Change to 2-way Associativity
(same cache & block size)

An associativity change (1-way to 2-way) might (incrementally) increase the hit time since the hardware now
has to parallel-compare which of the two blocks in a set match and then route it accordingly; it’s still going to be
on the order of 1 cycle for a hit, so we accepted “increase” or “no effect”. Since we’re not changing block size it
doesn’t affect the miss penalty, but hopefully we now don’t have as many conflict misses so our miss rate will
decrease, and we certainly need more hardware to do the tag comparisons.

M2) Floating down the C... [this is a 2-page question] (8 points = 1,1,2,1,1,1.1, 20 minutes)

Consider an 8-bit “minifloat” SEEEMMMM (1 sign bit, 3 exponent bits, 4 mantissa bits). All other properties of
IEEE754 apply (bias, denormalized numbers, «, NaNs, etc). The bias is -3.

a) How many minifloats are there in the range [1, 4)? (i.e., 1 < f < 4) 32
Bias of -3 means the exponent can go from -3 to 4 — to 2% so we are in range. 1 and 4 are powers of 2, so
that’s two “ranges”, and with MMMM = 16 mantissa values, that’'s 32 mantissa values.

b) What is the number line distance between 1 and the smallest minifloat bigger than 17? 116
1 is a special number since the exponent is 0 (after the bias is applied), thus it's
2°*1.MMMM — 1.MMMM (the binary shift left/right by 258 goes away) — the least M is counting by 1/16
so the next number after 1.0000, is 1.0001, which is 1+1/16.

c) Write times2 in one line using integer operations. Assume the leftmost “E” bit of £ (bolded above) is 0.

minifloat times2(minifloat f) { return f * 2.0; }

times2: addi a9, a0, 0booO10ROO = Ox10 ## Assume f is in the Lowest byte of the register

Ret
We have to add one to the exponent to make it work,cool!

Consider the following code (and truncated ASCII table; as ,) | |
an example of how to read it, “G” is 0b0100 0111): B.bsbs Y %1 9,
QAAATINE R a 5
uint8_t mystery (uint8_t *A) { bl Qe]t JRow
return *A ? (*A & mystery(A+1l)) : OxFF; 0fojolo] O 0 @ P
} ojojof | 1 A Q
ojol]t1jo 2 2 8 R
olo{i] 3 3 C]
d) Where is A stored? (not what it points to, *A) oli ool 4 P D T
Ocode Ostatic Oheap Ostack oo] 5 5 € U
stack (since it's a local variable / parameter / immediate) oji1]1{0] 6 6 F v
e) What is (char)mystery("GROW")? ojri{v]v1 7 7 6 w
The code does an AND of all the characters bits, the upper ' |oJofo| 8 8 H X
bits are 100 & 101 — 100, and the lower bits are 1111 & : g ‘l’ c', |90 9 j ’z’
0111 & 0010 — 0010, so it's 100 0010 — B ol o : ” C
e) [alternate exam] T lolo | 12 < L \
What is (char)mystery("FLOW")? tli1 1o 13 = M]
The code does an AND of all the characters bits, the upper vjirjijo] 14 > N ~
bits are 100 & 101 — 100, and the lower bits are 1111 & 1jrjr1ryis ? o —

0111 & 0110 & 1100 — 0100, so it's 100 0010 — D

f) A two-character string is passed into mystery that
makes it return the uint8_t value @ (not the character “@”).
The first character is “M” [‘K” alternate exam], the second
character is a number from 1-9. Which?

O1 O2 O3
04 O5 Oe
Or 08 O9

What number has no bits in common with M’s bits=100 1101 — all numbers have the high nibble with no bits in
common so it’s only the bits that only have 1 in the 2s column, thus 0010 or 0000 (but 0 is not part of it), so it
must be 0010 — 2. (note the ASCII low nibble of a 0-9 number is the number itself)

[Alternate exam] What number has no bits in common with K’s bits=100 1011 — all numbers have the high
nibble with no bits in common so it’s only the bits that only have 1 in the 4s column, thus 0100 or 0000 (but O is
not part of it), so it must be 0100 — 4. (note the ASCII low nibble of a 0-9 number is the number itself)

d) Incrementing or decrementing a variable is common: e.g., sum += amount, so we decide to make a new
RISC-V instruction (based on I-format instructions), and reuse the unused bits from rs1 to give to the
immediate (rd will be read and written, don’t touch funct3 or opcode). Using only that operation, what’s the
most amount that sum could now increase by (approx)? (select ONE for each column)

O1 O2 O4 O8 O16 (O<blank> Okilo Omega Ogiga Otera Opeta Oexa
032 Oe4 (O128 (O256 (O512 Okibi - Omebi Ogibi Otebi Opebi Oexbi

12 bits of immediate + 5 more from register = 17, but it's signed so -2 — 2'® - 1, approx 2'® which is 64 Kibi.

M3) Just one more thing...RISC-V self-modifying code! (8 points, 20 minutes)
(this is meant to be a fairly hard problem, we recommend saving it until the end of the exam...)

Your Phase | date was too late, so you can’t get into the course you want. You need to hack CalCentral’s
server to enroll yourself! You find the following program running on the CalCentral server:

.data ### Starts at 0x100, strings are packed tight (not word-aligned)
benign: .asciiz "\dev/null"
evil: .asciiz "/bin/sh"

.text ### Starts at 6x@)The alternate exam swapped t2,t0 for t1,t2, but otherwise it was the same

addi to x0 0x100 ### Load the address of the string “\dev/null”

addi t2 xo '/’ ### Load the correct character. The ASCII of °/’ 1is 47,,.
jal ra, change_reg

sb t2 o(te) ### Fix the backslash “\dev/null” - “/dev/null”

addi a@ x0 0x100

jal ra, os

The subroutine change_reg allows a user to arbitrarily set the value of any registers they choose when the
function is executed (similar to the debugger on Venus). os(char *a@) runs the command at a@. Select as few
registers as necessary, set to particular values to MAKE THE RISC-V CODE MODIFY ITSELF so the os
function runs “/bin/sh” to hack into the CalCentral database. Please note: even though change_reg can
arbitrarily change any register it STILL follows the RISC-V calling convention. You CANNOT assume
that the registers are initialized to zero on the launch of the program. Also, the assembler is NOT
optimized. Hint: Think about where the change needs to happen, then what it should be.

Value to set it to
Reg (in HEX without leading zeros)

(] a@ |ox
[] a1l [ox
[] a2 [ox
[] so ppx
[J s1 pox
(] s2 fox

'l to | ox12

(] t1 |ox

'l 2| exne
[] |Not Possible

We have to change “addi a@ x@ 0x100” to “addi a@ x@ ©x1@A” since the next string starts right after the
first, which has 9 characters and a trailing 0, so that’s bytes 0-9, meaning byte 10, or 0x10A is the location of
the string you need to pass to os in a0.

© 0 © 1 0 0 0 0 © © © © ©0 © 0 © o< old

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

© © @ 1 0 0 0 0 1 © 1 © © © 0O © 0 new
We need to store it in byte 18 (4 words = 16 bytes to skip over and 2 bytes within the word to skip), and write
A@ into the 18th = 0x12 byte to clobber the lower nibble of the immediate with A and keep rs1 to be 0, to make
“‘addi a@ x0 0x100” become “addi a®@ x0 ©x10A”
[what]t2 = @xA@, [where]tO = 0x12
The alternate exam swapped t2,t0 for t1,t2, but otherwise it was the same.

F1) VM... (20 points = 12+4+4, 30 minutes)

a) What are the steps that occur for a memory read (when a page fault is encountered)? You may assume
there’s room in memory for a new page, and we're using LRU replacement. Assume there’s no data cache.
Mark the order of the required actions, there’s at most one choice per #, and every row/col should have a #.

Below, O=>Select ONE, [_]=>Select ALL that apply 1 10

Request data using the (Ophysical @virtual) address

Access Page Table with OPPN @VPN (OOffset

Access TLB with OPPN @VPN (OOffset

Adjust LRU bits in [lfTLB [JPage Table [JMemory

Split physical address into
(@PPN+Offset (OVPN+Offset (OPPN+VPN) fields

Split virtual address into
(OPPN+Offset @VPN+Offset (OPPN+VPN) fields

Request new page from OS/Memory manager

Update Page Table with new [lJPPN [VPN [JOffset

Update TLB with new [liPPN [lIVPN [offset

ol ololo| ® | o | olo|o|of
Ol olo|lol o | O] o|®o|o]| e
ol olo|lol o | o | olo/®o| ~
Ol 0|o|® o | 0| 0lo|olo] «
ol ololo] o | ® | o|o|o|o] @
ol o|®lo] O | O | olo|o|o| ~
Ol ®olo] O] O] 0|o|o|o]
Ol olo|o] O | O | ®0|0|0| «

@ OO0 O] O] O0O0l0

O] OO0 O | O | O|O|0|®

Return the data (this is the last thing we do)

_1_Request data using the virtual address
_2_Split virtual address into VPN, Offset fields
~3_Access TLB with VPN

_4 Access Page Table with VPN

_5 Request new page from OS/Memory manager
6 Split physical address into PPN, Offset fields
_7_Update page table with new PPN

8 Update TLB with new PPN,VPN

~ 9 Adjust LRU bits on TLB

10 Return the data

b) Mark the following questions as either True or False:

If we have a TLB which contains a number of entries equal to MEMORY_SIZE / PAGE_SIZE,

@True OFalse every TLB miss will also be a page fault.

OTrue @False | If we change our TLB to direct-mapped, we're likely to see fewer TLB misses.

Every TLB miss is equally expensive in terms of the amount of time it takes for us to

True False . .
O ® resolve our virtual address to a physical address.

OTrue @False | A virtual address will always resolve to the same physical address.

__True___ If we have a TLB which contains a number of entries equal to MEMORY_SIZE / PAGE_SIZE, every
TLB miss will also be a page fault.
__False___ If we change our TLB to direct-mapped, we're likely to see fewer TLB misses.

__False__ Every TLB miss is equally expensive in terms of the amount of time it takes for us to resolve our
virtual address to a physical address. (Page faults are much more expensive than Page-Table hits. Both are
possible outcomes of a TLB miss.)

__False___ A virtual address will always resolve to the same physical address.

c) Consider a VM system on a RISC-V 32-bit machine with 2%° page table rows, no TLB, and limited physical
RAM, choose ONE of the following code snippets that would always have the most page faults per memory
access by touching elements of a page-aligned uint8_t array A, and choose ONE value of STRIDE (choose
the minimum possible value that accomplishes it). Both A_SIZE and STRIDE are powers of 2, and A_SIZE >
STRIDE. random(N) returns a random integer from 0 to N.

O for (i = o; i < STRIDE; i++) { A[random(A_SIZE)] = random(255); }

O for (i = 0; i < A_SIZE; i++) { A[random(STRIDE)] = random(255); }

O for (i = o; i < A_SIZE; i++) { A[i] = random(STRIDE); }

O for (i = 0; i < STRIDE; i++) { A[i] = random(255); }

@ for (i = o; i < A SIZE; i+=STRIDE) { A[i] = random(255); }

O for (i = STRIDE; i < A _SIZE; i++) { A[i] = A[i-STRIDE]; A[i-STRIDE] = A[i]; }

020 021 022 023 024 025 026 027 028 029 0210 0211 .212
STRIDE: 0213 0214 0215 0216 0217 0218 0219 OzZO 0221 .222 0223 0224
0225 0226 0227 0228 0229 0230 0231 0232

To pound on the memory system the most, you’d request a different page with every access. (the first two can’t
guarantee that). Stride should be page size, and since 32 bits virtual address = VPN (20 bits since 2% page
table rows) + offset, then offset = 12. Therefore stride should be page size = 2°™* = 2'?, The alternate exam
had 2'° page table rows, so using the same reasoning, it'd be stride = page size = 2%,

F2) SDS (20 points = 8+5+7, 30 minutes)

a) Transform the fun function below into the fewest Boolean gates that implement the same logic.
You may use AND, OR, XOR and NOT gates. Hint: start with the truth table.
bool fun(bool A, bool B) { return (A == B) ? true : B; }

a) If you write out the truth table, it's

A B | fun(A,B)

FALSE | FALSE | TRUE

FALSE | TRUE | TRUE

TRUE | FALSE | FALSE

TRUE | TRUE | TRUE

...and using sum of products is:

IAIB + !AB + AB

IA (B + B) + AB distribution

A + AB complimentarity, identity

A + B [uniting theorem v.2: x + Ixy = x + y (here x = |A, B = y)]

(the alternate exam swapped A and B. so they would have A+!B (the bubble would be on B, not A below).

fun(A,B)

b) The logic implementation of a state machine is shown in the figure below. How many states does this
state machine have? (Assume that it always starts from Out0=0, Out1=0)

A
I'__)D—DQ L 1o a

kP Clk | >

Out0 Outl

Out0 « xor(!0Out0, Out1)

Out1 « Out0
Out0 Out1 Binary
FALSE FALSE 0
TRUE FALSE 2
FALSE TRUE 1
FALSE FALSE 0
etc etc etc

(Out0O=TRUE, OUT1=TRUE) is never accessed.

Numberofstates=O1 O2 @3 O4 O5 O O7r O8 O9

c) In the figure above, flip-flop clk-to-q delay is 40ps, setup time is 30ps and hold time is 30ps. XOR
delay is 20ps and the inverter delay is 10ps. What is the maximum frequency (F ,,) of operation?

I:max = 1/(t + tinver‘(er + t><or + t

)= 1/(100ps) = 10 GHz .

clk-q setup

The alternate exam had double the delays and setup/hold times, so the Fmax would be 1/200ps = 5 GHz.

F3) Datapathology [this is a 2-page question] (20 points = 4+10+6, 30 minutes)

The datapath below implements the RV32l instruction set. We'd like to implement sign extension for loaded
data, but our loaded data can come in different sizes (recall: 1b, 1h, 1w) and different intended signs (1bu vs.
1b and 1hu vs 1h). Each load instruction will retrieve the data from the memory and “right-aligns” the LSB of
the byte or the half-word with the LSB of the word to form mem[31:0].

+4
c+4
ﬁ wh pc P 2
DataD Reg[rs1] - 1
alu Inst[11:7] wb
c ad AddrD N | %
0 addr Inst[19:15] | DataR —| 2
pc+d inst AddrA DataA ranch + |3l addr mem| m fnemx
7 Inst[24:20] c x
AddrB DataBh omp ALU]
clk MEM A __|pataw 2
1
Reg[] A DMEM A
T |
clk Reg[rs2] clk
Imm[31:0]
PCSel Inst[31:0] ImmSel RegWEn Brun IBrLT Bsel ALUSel MemWEn LDExt WBSel
BrEq Asel (SelH, Selw)
Control logic

a) To correctly load the data into the registers, we’ve created two control signals SelH and SelW that
perform sign extension of mem[31:0] tomemx[31:0] (see below). SelH controls the half-word sign
extension, while SelW controls sign extension in the two most significant bytes. What are the Boolean
logic expressions for the four (0, 1, 2, 3) SelW cases in terms of Inst[14:12] bits to handle these five
instructions (1b, 1h, 1w, 1bu and 1hu)? SelH has been done for you. In writing your answers, use the
shorthands “114” for Inst[14], “I13” for Inst[13] and “I12” for Inst[12]. You don’t have to reduce the
Boolean expressions to simplest form. (Hint: green card!) Answers (and simplified form)

0 3\ SelW=3| M4+~13+~112+114+~113+112=114
15
memil 2 Selw=2 ~14 ¢ ~13 ¢+ 112 = ~I14 * 112
mem[7] |, |memx[31:16]
mem([31:16] | SelW=1 ~114 ¢ ~I13 » ~I12
’ﬁeuw Selw=0 ~M4+13«~12=113
mem([31:0]
0
e I _ SelH=2 114 « ~[13 + ~|12
mem[7] . _r.nemx[15.8]
memi1s:g)| SelH=1 ~114 + ~|13 + ~|12
/rse'” SelH=0 113 + 112

mem[7:0]= memx [7:0]

(Single-bit values mem[7] and mem[15] are
wired to 8 or 16 outputs)

Here’s how we figured it out -- we made a table:

INST

111

432
Inst funct3 byte3+byte2 | bytel | byteo
1b 000 mem[7] SelW=1 | mem[7] SelH=1 | mem[7:0]
1h 001 mem[15] SelW=2 | mem[15:8] SelH=0 | mem[7:0]
1w 010 mem[31:16] SelW=0 | mem[15:8] SelH=0 | mem[7:0]
lbu 100 0 SelhW=3 |) SelH=2 | mem[7:0]
lhu 101 0 SelW=3 | mem[15:8] SelH=0 | mem[7:0]

... and then reversing the table for the cases based on the INST funct3 bits above yields the values above.

F3) Datapathology. continued (20 points = 4+10+6, 30 minutes)

(this is the same diagram as on the previous page, with five stages of execution annotated)
} 1

v

t
1
]
1
1
wb pe : pctd 2
I alu 1
alu Inst[11:7] I c 0 1wb
oJTC addr nst[19:15] L DataR |—{ & L7
pc+4 inst [+ + [P adar mem | m nemx| |
T 1 Inst[24:20] 1 aLu ;, |
clk | 1 DataW 3 1
IMEM || 1 I I |" DMEM , I
! 1 T |
! I Reg[rs2] clk 1
! I I
! | |
! | | |
| 1 1 |
1 1]
PCSel :Inst[31:0] ImmSel RegWEn | Brun |BrLT Bsel| ALUSdl MemWEn LDExt WBSel
1 R ! BrEq Asel 1
Control logic | 1
t
IF | ID : EX : MEM | WB

b) In the RISC-V datapath above, mark what is used by a jal instruction. (See green card for its effect...)

Select | PCSel Mux: O “pc+4”branch @ “alu” branch O * (don't care)
one per | ASel Mux: @ ‘pc’ branch (O Reg[rs1] branch (O * (don'’t care)
fow | BSel Mux: @ “imm” branch (O Reglrs2] branch O * (don'’t care)
WBSel Mux: @ “pc +4”branch O “alu” branch O*mem” branch O * (don’t care)
Se;zcz;all Datapath units: [_| Branch Comp . Imm. Gen [] Load Extend
a

apply

RegFile:

[] Read Reg][rs1]

[] Read Reg|[rs2]

. Write Reg]rd]

c) If we convert the above datapath to a 5-stage pipeline with no forwarding, what types of hazards
(S=structural, D=data, C=control) exist after each line in the following code; how many nops must we add?
(Assume a register can be written and read in the same cycle, and that the Branch Comp is in the EX stage.)

start: 1w t0, 0(a0) Hazard (circle one): S D C None # of nop 2
t0 being written to and read from the next op causes a data hazard and 2-cycle stall (or introduction of 2 NOPs
so the W and R of the register file lines up -- thankfully we can read and write registers the same cycle)

beq t0, x0, end Hazard (circle one): S D C None # of nop 2
We need to wait until after the EX stage to know whether t0==x0 before we can load the correct next
instruction, so that causes a control hazard and a 2-cycle stall (or introduction of 2 NOPs)

addi tO, tO, 2 Hazard (circle one): S D C None # of nop 2
t0 being written to and read from the next op causes a data hazard and 2-cycle stall (or introduction of 2 NOPs
so the W and R of the register file lines up -- thankfully we can read and write registers the same cycle)

sw t0, 0(a0) Hazard (circle one): S D C None # of nop

end:

inst 1 2 3 4 5 6 7 8 9 10 11 12 13 | 14

1w t0 0(a0) | IF

beq t0,x0,end

addi t0, tO0, 2
t0

ID EX MEM | WB
t0 w
a0

sw t0, 0(a0)

F4) What’s that smell?! Oh, it’s Potpourri... (20 points=2 each, 30 minutes)

a) We build a small Internet-of-things device to measure dog body temperature and send it to a receiver. It
will only send the following temperatures: {100.0, 100.1, 100.2, 100.4, 100.8, 101.6, 103.2, 106.4}, and
any time the temperature is not those exact values, it'll send whatever value is the closest one. What
encoding/decoding scheme would you use for these numbers and how many total bits would you need?
Scheme: OUnsigned fixed point ~ OBias fixed point (O2s complement fixed point @ Other
Bits: @3 O4 O5 O Or O8 O9 O10 O11 O12 O13 O14 O15 O16

Other (just have a lookup table) using 3 bits to choose from the 8 values

b) OTrue @False A 0/0 ALU operation would cause an interrupt, dealt with by the trap handler.
False, that’'s an exception

c) OTrue @False DMA (Direct Memory Access) is a form of Programmed 1/0 the CPU handles.
False, DMA obviates the need for Programmed I/O where the CPU does the work

d) OTrue @False A shared-based network is another kind of parallelism; multiple nodes can talk to
each other at the same time, “sharing” the network.
False, that's a switched network. A shared network is a “bus” that can only be driven by one source at a time

e) OFirst-fit @Next-fit (OBest-fit would make sense for allocating blocks on a Flash (SSD) drive.
Next-fit, since it needs to spreads the writes out to have even read wear

f) OControl (ODatapath @Memory Olnput OOutput causes the most headaches with multi-core.
Memory, with all the cache coherence issues we've seen

g) OTrue @False Introducing locks in C (e.g., code below) cures the race condition bug with threads.
while (lock != @) ; // spin-wait until the variable lock is released
// Llock == @ now (unlocked)
lock = 1; // set Llock (lLocked)
// access shared resource ...
lock = @; // release Lock (unlocked)
False, it doesn’t work in C, you need an assembly-level ATOMIC test-and-set mechanism

h) The code below was written to sum the numbers from 1 to N (always a positive number). Select ONE.

O It works, but it has to be run on a int sumup(int N) {
machine with 16 physical cores int THREADS = 16, TOTAL = @, sum[THREADS];
O It works, but it has to be run on a omp_set_THREADS (THREADS) ;
machine with 16 logical cores for (int i=0@;i<THREADS;i++) sum[i]=0;
O It works, but only when N is bigger #pragma omp parallel
than the number of physical cores {
O It works, but only when N is bigger int id = omp_get_thread_num();
than the number of logical cores for (int i=id;i<=N;i+=THREADS) sum[id] += i;
@ !t has a race condition bug TOTAL+=sum[id];
O It has a deadlock bug }
O It always works return TOTAL;}

Race condition bug (TOTAL is read and incremented by multiple threads)

i) This:main() { for(uint8_t i = 9; i >= @; --1i) printf("%u", 1i); } causes... (select ONE)
(O A compile error because the printf statement needs to be on a different line
(O A compile error because the printf statement needs to be surrounded by curly brackets { }
@ Aninfinite loop
(O Nothing to print out because there’s no trailing \n (so the output doesn’t get flushed)
(O The numbers to print out like this: 987654321
(O The numbers to print out like this: 876543210
(O The numbers to print out like this: 9876543210
Infinite loop (the unsigned number is never negative to break out of the loop)

