
Your Name (first last)

← Name of person on left (or aisle)

UC Berkeley CS61C

Fall 2018 Final Exam

TA name

SID

Name of person on right (or aisle) →

Fill in the correct circles & squares completely…like this: ⬤ (select ONE), and ⬛(select ALL that apply)

The questions that strictly clobber the Midterm are the first three, labeled “M1” through “M3”.
The remaining questions cover the material after the Midterm, “F1” through “F4”.

Question M1 M2
(2 pages)

M3 Ms F1 F2 F3
(2 pages)

F4 Fs Total

Minutes 20 20 20 60 30 30 30 30 120 180

Points 8 8 8 24 20 20 20 21 81 105

M1) Cache, money y’all… (8 points, ½ points each, 20 minutes)

A mystery, byte-addressed cache has Tag:Index:Offset (T:I:O) = 9:4:3. For the computer,

a) What is the virtual address space? (select ONE) ◯8-bit ◯16-bit ◯32-bit ◯64-bit ◯Not enough info!
b) What is the physical address space? (select ONE) ◯8-bit ◯16-bit ◯32-bit ◯64-bit ◯Not enough info!

Different caches can have the same T:I:O! Let’s explore that in parts (b) and (c) below.

c) How could we maximize cache size, while preserving T:I:O=9:4:3? (select ONE per row)

Associativity ◯ 2-way set ◯ Direct Mapped ◯ 8-way set ◯ 4-way set

Block Size ◯ 4 bytes ◯ 8 bytes ◯ 12 bytes ◯ 3 bytes

of Blocks ◯ 8 blocks ◯ 16 blocks ◯ 4 blocks ◯ 128 blocks

d) How could we minimize cache size, while preserving T:I:O=9:4:3? (select ONE per row)

Associativity ◯ 2-way set ◯ Direct Mapped ◯ 8-way set ◯ 4-way set

Block Size ◯ 4 bytes ◯ 8 bytes ◯ 12 bytes ◯ 3 bytes

of Blocks ◯ 8 blocks ◯ 16 blocks ◯ 32 blocks ◯ 64 blocks

e) Now we’re working with a write-back, 1024B direct-mapped cache that has 8B blocks. We’re interested in
seeing if we can lower our AMAT if our memory access pattern is iterating through an array with a fixed stride.
The majority of our misses are conflict misses, and we have an inconsequential amount of compulsory and
capacity misses. For each of the following modifications, mark how it changes each component of AMAT (Hit
Time, Miss Penalty, Miss Rate) and the overall Hardware Complexity.

Modification Hit Time Miss Penalty Miss Rate Hardware Complexity

Change block size from 8B to 16B,
but keep the cache size the same

◯ Increase
◯ Decrease
◯ No effect

◯ Increase
◯ Decrease
◯ No effect

◯ Increase
◯ Decrease
◯ No effect

◯ Increase
◯ Decrease
◯ No effect

Change to 2-way Associativity
(same cache & block size)

◯ Increase
◯ Decrease
◯ No effect

◯ Increase
◯ Decrease
◯ No effect

◯ Increase
◯ Decrease
◯ No effect

◯ Increase
◯ Decrease
◯ No effect

M2) Floating down the C... [this is a 2-page question] (8 points = 1,1,2,1,1,1,1, 20 minutes) SID_______

Consider an 8-bit “minifloat” SEEEMMMM (1 sign bit, 3 exponent bits, 4 mantissa bits). All other properties of
IEEE754 apply (bias, denormalized numbers, ∞, NaNs, etc). The bias is -3.

a) How many minifloats are there in the range [1, 4)? (i.e., 1 ≤ f < 4) __________

b) What is the number line distance between 1 and the smallest minifloat bigger than 1? __________

c) Write times2 in one line using integer operations. Assume the leftmost “E” bit of f (bolded above) is 0.
minifloat times2(minifloat f) { return f * 2.0; }

times2: ______ a0, a0, ______ ## Assume f is in the lowest byte of the register

 ret

M2) Floating down the C…, continued... (8 points = 1,1,2,1,1,1,1, 20 minutes)

Consider the following code (and truncated ASCII table;
as an example of how to read it, “G” is 0b0100 0111):

uint8_t mystery (uint8_t *A) {

 return *A ? (*A & mystery(A+1)) : 0xFF;

}

d) Where is A stored? (not what it points to, *A)
 ◯code ◯static ◯heap ◯stack

e) What is (char)mystery("GROW")? _____

f) A two-character string is passed into mystery

that makes it return the uint8_t value 0 (not the
character “0”). The first character is “M”, the
second character is a number from 1-9. Which?
◯1 ◯2 ◯3
◯4 ◯5 ◯6
◯7 ◯8 ◯9

g) Incrementing or decrementing a variable is common: e.g., sum += amount, so we decide to make a
new RISC-V instruction (based on I-format instructions), and reuse the unused bits from rs1 to give to
the immediate (rd will be read and written, don’t touch funct3 or opcode). Using only that operation,
what’s the most amount that sum could now increase by (approx)? (select ONE for each column)
◯1 ◯2 ◯4 ◯8 ◯16

 ◯32 ◯64 ◯128 ◯256 ◯512
◯<blank> ◯kilo ◯mega ◯giga ◯tera ◯peta ◯exa
 ◯kibi ◯mebi ◯gibi ◯tebi ◯pebi ◯exbi

M3) Just one more thing…RISC-V self-modifying code! (8 points, 20 minutes) SID_________________

(this is meant to be a fairly hard problem, we recommend saving it until the end of the exam…)

Your Phase I date was too late, so you can’t get into the course you want. You need to hack CalCentral’s
server to enroll yourself! You find the following program running on the CalCentral server:

.data ### Starts at 0x100, strings are packed tight (not word-aligned)
 benign: .asciiz "\dev/null"

 evil: .asciiz "/bin/sh"

.text ### Starts at 0x0
addi t0 x0 0x100 ### Load the address of the string “\dev/null”

 addi t2 x0 '/' ### Load the correct character. The ASCII of ’/’ is 4710.
 jal ra, change_reg

 sb t2 0(t0) ### Fix the backslash “\dev/null” → “/dev/null”

 addi a0 x0 0x100

 jal ra, os

The subroutine change_reg allows a user to arbitrarily set the value of any registers they choose when the
function is executed (similar to the debugger on Venus). os(char *a0) runs the command at a0. Select as
few registers as necessary, set to particular values to MAKE THE RISC-V CODE MODIFY ITSELF so the os
function runs “/bin/sh” to hack into the CalCentral database. Please note: even though change_reg can
arbitrarily change any register it STILL follows the RISC-V calling convention. You CANNOT assume
that the registers are initialized to zero on the launch of the program. Also, the assembler is NOT
optimized. Hint: Think about where the change needs to happen, then what it should be.

Reg
Value to set it to

(in HEX without leading zeros)

▢ a0 0x

▢ a1 0x

▢ a2 0x

▢ s0 0x

▢ s1 0x

▢ s2 0x

▢ t0 0x

▢ t1 0x

▢ t2 0x

▢ Not Possible

F1) VM... (20 points = 12+4+4, 30 minutes)

a) What are the steps that occur for a memory read (when a page fault is encountered)? You may assume
there’s room in memory for a new page, and we’re using LRU replacement. Assume there’s no data cache.
Mark the order of the required actions, there’s at most one choice per #, and every row/col should have a #.

 Below, ◯⇒Select ONE, ▢⇒Select ALL that apply 1 2 3 4 5 6 7 8 9 10

 Request data using the (◯physical ◯virtual) address ⬤ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

 Access Page Table with ◯PPN ◯VPN ◯Offset ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

 Access TLB with ◯PPN ◯VPN ◯Offset ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

 Adjust LRU bits in ▢TLB ▢Page Table ▢Memory ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

 Split physical address into
 (◯PPN+Offset ◯VPN+Offset ◯PPN+VPN) fields

◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

 Split virtual address into
 (◯PPN+Offset ◯VPN+Offset ◯PPN+VPN) fields

◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

 Request new page from OS/Memory manager ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

 Update Page Table with new ▢PPN ▢VPN ▢Offset ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

 Update TLB with new ▢PPN ▢VPN ▢Offset ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

 Return the data (this is the last thing we do) ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ⬤

b) Mark the following questions as either True or False:

◯True ◯False If we have a TLB which contains a number of entries equal to MEMORY_SIZE / PAGE_SIZE,
 every TLB miss will also be a page fault.

◯True ◯False If we change our TLB to direct-mapped, we’re likely to see fewer TLB misses.

◯True ◯False Every TLB miss is equally expensive in terms of the amount of time it takes for us to
 resolve our virtual address to a physical address.

◯True ◯False A virtual address will always resolve to the same physical address.

c) Consider a VM system on a RISC-V 32-bit machine with 220 page table rows, no TLB, and limited physical
RAM, choose ONE of the following code snippets that would always have the most page faults per memory
access by touching elements of a page-aligned uint8_t array A, and choose ONE value of STRIDE (choose
the minimum possible value that accomplishes it). Both A_SIZE and STRIDE are powers of 2, and A_SIZE >
STRIDE. random(N) returns a random integer from 0 to N.

◯ for (i = 0; i < STRIDE; i++) { A[random(A_SIZE)] = random(255); }

◯ for (i = 0; i < A_SIZE; i++) { A[random(STRIDE)] = random(255); }

◯ for (i = 0; i < A_SIZE; i++) { A[i] = random(STRIDE); }

◯ for (i = 0; i < STRIDE; i++) { A[i] = random(255); }

◯ for (i = 0; i < A_SIZE; i+=STRIDE) { A[i] = random(255); }

◯ for (i = STRIDE; i < A_SIZE; i++) { A[i] = A[i-STRIDE]; A[i-STRIDE] = A[i]; }

STRIDE:
◯20 ◯21 ◯22 ◯23 ◯24 ◯25 ◯26 ◯27 ◯28 ◯29 ◯210 ◯211 ◯212
◯213 ◯214 ◯215 ◯216 ◯217 ◯218 ◯219 ◯220 ◯221 ◯222 ◯223 ◯224
◯225 ◯226 ◯227 ◯228 ◯229 ◯230 ◯231 ◯232

F2) SDS (20 points = 8+5+7, 30 minutes) SID_________________

a) Transform the fun function below into the fewest Boolean gates that implement the same logic.
You may use AND, OR, XOR and NOT gates. Hint: start with the truth table.
bool fun(bool A, bool B) { return (A == B) ? true : B; }

b) The logic implementation of a state machine is shown in the figure below. How many states does this

state machine have? (Assume that it always starts from Out0=0, Out1=0)

Number of states = ◯1 ◯2 ◯3 ◯4 ◯5 ◯6 ◯7 ◯8 ◯9

c) In the figure above, flip-flop clk-to-q delay is 40ps, setup time is 30ps and hold time is 30ps. XOR

delay is 20ps and the inverter delay is 10ps. What is the maximum frequency (Fmax) of operation?

Fmax = ____________GHz .

F3) Datapathology [this is a 2-page question] (20 points = 4+10+6, 30 minutes)
The datapath below implements the RV32I instruction set. We’d like to implement sign extension for loaded
data, but our loaded data can come in different sizes (recall: lb, lh, lw) and different intended signs (lbu vs.
lb and lhu vs lh). Each load instruction will retrieve the data from the memory and “right-aligns” the LSB of
the byte or the half-word with the LSB of the word to form mem[31:0].

a) To correctly load the data into the registers, we’ve created two control signals SelH and SelW that

perform sign extension of mem[31:0] to memx[31:0] (see below). SelH controls the half-word sign
extension, while SelW controls sign extension in the two most significant bytes. What are the Boolean
logic expressions for the four (0, 1, 2, 3) SelW cases in terms of Inst[14:12] bits to handle these five
instructions (lb, lh, lw, lbu and lhu)? SelH has been done for you. In writing your answers, use the
shorthands “I14” for Inst[14], “I13” for Inst[13] and “I12” for Inst[12]. You don’t have to reduce the
Boolean expressions to simplest form. (Hint: green card!)

SelW=3

SelW=2

SelW=1

SelW=0

SelH=2 I14 • ~I13 • ~I12

SelH=1 ~I14 • ~I13 • ~I12

SelH=0 I13 + I12

(Single-bit values mem[7] and mem[15] are
wired to 8 or 16 outputs)

F3) Datapathology, continued (20 points = 4+10+6,
30 minutes) SID_________________

(this is the same diagram as on the previous page, with

five stages of execution annotated)

b) In the RISC-V datapath above, mark what is used by a jal instruction. (See green card for its effect...)

Select
one per

row

 PCSel Mux: ◯ “pc + 4” branch ◯ “alu” branch ◯ * (don’t care)
 ASel Mux: ◯ “pc” branch ◯ Reg[rs1] branch ◯ * (don’t care)
 BSel Mux: ◯ “imm” branch ◯ Reg[rs2] branch ◯ * (don’t care)
 WBSel Mux: ◯ “pc + 4” branch ◯ “alu” branch ◯“mem” branch ◯ * (don’t care)

Select all
that

apply

Datapath units: ▢ Branch Comp ▢ Imm. Gen ▢ Load Extend
 RegFile: ▢ Read Reg[rs1] ▢ Read Reg[rs2] ▢ Write Reg[rd]

c) If we convert the above datapath to a 5-stage pipeline with no forwarding, what types of hazards
(S=structural, D=data, C=control) exist after each line in the following code; how many nops must we add?
(Assume a register can be written and read in the same cycle, and that the Branch Comp is in the EX stage.)

start: lw t0, 0(a0) Hazard (circle one): S D C None # of nop ___________

 beq t0, 0, end Hazard (circle one): S D C None # of nop ___________
 addi t0, t0, 2 Hazard (circle one): S D C None # of nop ___________
sw t0, 0(a0) Hazard (circle one): S D C None # of nop ___________

end:

F4) What’s that smell?! Oh, it’s Potpourri... (20 points=2 each, 30 minutes)
a) We build a small Internet-of-things device to measure dog body temperature and send it to a receiver. It

will only send the following temperatures: {100.0, 100.1, 100.2, 100.4, 100.8, 101.6, 103.2, 106.4}, and
any time the temperature is not those exact values, it’ll send whatever value is the closest one. What
encoding/decoding scheme would you use for these numbers and how many total bits would you need?
Scheme: ◯Unsigned fixed point ◯Bias fixed point ◯2s complement fixed point ◯Other
Bits: ◯3 ◯4 ◯5 ◯6 ◯7 ◯8 ◯9 ◯10 ◯11 ◯12 ◯13 ◯14 ◯15 ◯16

b) ◯True ◯False A 0/0 ALU operation would cause an interrupt, dealt with by the trap handler.

c) ◯True ◯False DMA (Direct Memory Access) is a form of Programmed I/O the CPU handles.

d) ◯True ◯False A shared-based network is another kind of parallelism; multiple nodes can talk to
 each other at the same time, “sharing” the network.

e) ◯First-fit ◯Next-fit ◯Best-fit would make sense for allocating blocks on a Flash (SSD) drive.

f) ◯Control ◯Datapath ◯Memory ◯Input ◯Output causes the most headaches with multi-core.

g) ◯True ◯False Introducing locks in C (e.g., code below) cures the race condition bug with threads.
while (lock != 0) ; // spin-wait until the variable lock is released
// lock == 0 now (unlocked)

lock = 1; // set lock (locked)
// access shared resource ...

lock = 0; // release lock (unlocked)

h) The code below was written to sum the numbers from 1 to N (always a positive number). Select ONE.

◯ It works, but it has to be run on a
 machine with 16 physical cores
◯ It works, but it has to be run on a
 machine with 16 logical cores
◯ It works, but only when N is bigger
 than the number of physical cores
◯ It works, but only when N is bigger
 than the number of logical cores
◯ It has a race condition bug
◯ It has a deadlock bug
◯ It always works

int sumup(int N) {

 int THREADS = 16, TOTAL = 0, sum[THREADS];

 omp_set_THREADS(THREADS);

 for (int i=0;i<THREADS;i++) sum[i]=0;

 #pragma omp parallel

 {

 int id = omp_get_thread_num();

 for (int i=id;i<=N;i+=THREADS) sum[id] += i;

 TOTAL+=sum[id];

 }

 return TOTAL;}

i) This: main() { for(uint8_t i = 9; i >= 0; --i) printf("%u", i); } causes… (select ONE)

◯ A compile error because the printf statement needs to be on a different line
◯ A compile error because the printf statement needs to be surrounded by curly brackets { }
◯ An infinite loop
◯ Nothing to print out because there’s no trailing \n (so the output doesn’t get flushed)
◯ The numbers to print out like this: 987654321
◯ The numbers to print out like this: 876543210
◯ The numbers to print out like this: 9876543210

