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Midterm: Solutions

1. Linear functions of images. In this problem we consider linear functions of an image
with 2× 2 pixels shown below.

3 7
8 5

This given image can be represented as the 4-vector


3
7
8
5

.

Each of the operations described below defines a linear transformation y = f(x), where
the 4-vector x represents the original image, and the 4-vector y represents the resulting
or transformed image. For each of these operations, provide the 4 × 4 matrix A for
which y = Ax. Also in each case, determine the rank of the matrix A.

(a) Reflect the original image x across the vertical (i.e. bottom-to-top) axis.

(b) Rotate the original image x clockwise 90◦.
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Name:

SID:

(c) Rotate the original image x clockwise by 180◦.

(d) Set each pixel value yi to be the average of the neighbors of pixel i in the original
image. We define neighbors, to be the pixels immediately above and below and
to the left and right. For the 2× 2 matrix, every pixel has 2 neighbors.

Solution:

(a) For y = Ax, we have the reflection (across the vertical axis) matrix A:
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




3
7
8
5

 =


7
3
5
8


Where y is the flipped image x. Here rank(A) = 4 since all the columns are
linearly independent.

(b) For y = Ax, we have the 90◦ rotation matrix A:
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0




3
7
8
5

 =


8
3
5
7


Where y is the rotated image x. Here rank(A) = 4 since all the columns are
linearly independent.
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(c) For y = Ax, we have the 180◦ rotation A:
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




3
7
8
5

 =


5
8
7
3


Where y is the rotated image x. Here rank(A) = 4 since all the columns are
linearly independent.

(d) For y = Ax, we have the matrix A:
0 1

2
1
2

0
1
2

0 0 1
2

1
2

0 0 1
2

0 1
2

1
2

0




3
7
8
5

 =


7.5
4
4

7.5


Where yi is the average of the neighbors of pixel i. Here rank(A) = 2 since there
are only 2 columns that are linearly independent.
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2. Fun with the SVD. Consider the 4× 3 matrix

A =
[
a1 a2 a3

]
(1)

where ai for i ∈ {1, 2, 3} form a set of orthogonal vectors satisfying ‖a1‖2 = 3, ‖a2‖2 =
2, ‖a3‖2 = 1.

(a) What is the SVD of A? Express it as A = USV >, with S the diagonal matrix of
singular values ordered in decreasing fashion, and explicitly describe U and V .

(b) Write A as a sum of 3 rank-one matrices.

Name:

SID:

(c) What is the dimension of the null space, dim(null(A))?
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Name:

SID:

(d) What is the rank of A, rank(A)? Provide an orthonormal basis for the range of
A.

Name:

SID:

(e) Find the maximum “gain” of A (the amount that A can “expand” an input vec-

tors `2 norm). More formally, what is the value of maxx:‖x‖2=1
‖Ax‖2
‖x‖2 ?
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(f) If I3 denotes the 3 × 3 identity matrix, consider the matrix Ã =

[
A
I3

]
∈ R7×3?

What are the singular values of Ã (in terms of the singular values of A)?

Solution:

(a) The SVD of A = USV >. Due to the orthogonality of the ai we have that

A>A = V S2V =

9 0 0
0 4 0
0 0 1

 (2)

Thus V = I and S = diag(3, 2, 1). Finally we have that U = AS−1 which becomes

A =
[
a1
3

a2
2

a3
1

]
(3)

(b) If we let ei denote the standard basis vectors in R3 then we immediately obtain
that

A = a1e
>
1 + a2e

>
2 + a3e

>
3 . (4)

Expanding out the SVD of the matrix is also a valid answer.

(c) From part (a) all of the singular values of the A are non-zero. So the dimension
of the null space is 0. Alternatively, all the columns of A are orthogonal – so no
(non-zero) linear combination of them can equal zero.

(d) The rank of A is simply the number of non-zero singular values. So rank(A) = 3.
The columns of U (defined above) provide an orthonormal basis for the range of
A.
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(e) As defined the maximum “gain” of A (also knowns as it spectral norm) is simply
given by its largest singular value. Hence the maximum “gain” of A is 3.

(f) We have that Ã>Ã = A>A + I3 = V (S2 + I3)V
>. Hence if we denote σi as the

singular values of A then the singular values of Ã are σ̃i =
√
σ2
i + 1 which are√

10,
√

5,
√

2.

It’s fine if they write either the algebraic expression or the explicit values for this
question.
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3. Regression and Applications. We first consider the regularized least-squares problem,

wλ := arg min
w
‖y −Xw‖22 + λ‖w‖22, (5)

and subsequently an application to modeling time series. To begin, we investigate
several fundamental properties of regression. Here, X ∈ Rn,p is the data matrix (with
one data point per row), y ∈ Rn is the response vector, and λ > 0 is a “ridge”
regularization parameter.

(a) Assume, only for this part, that n < p. Is X>X invertible? Explain your reason-
ing.

(b) Now assume no relation between n and p. Is X>X + λI invertible? Explain your
reasoning.

(c) Show that the solution to the full problem can be written as

wλ = (X>X + λI)−1X>y (6)

Name:

SID:
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(d) Now suppose we would like find w that minimizes,

w = arg min
w
{

k∑
i=1

λi‖yi −Xiw‖22} (7)

(so it jointly fits k different linear regression objectives). Explain how to re-
formulate this problem as a single least-squares problem with augmented X̃ and
ỹ in an objective ‖ỹ − X̃w‖22, and find the solution w to the aforementioned
problem1.

Name:

SID:

(e) What is the computational complexity (in big-O notation) of computing the so-
lution the previous question in terms of n, p, k? Assume each Xi ∈ Rn×p and
yi ∈ Rn and once again that the relevant square matrices are invertible.

Name:

SID:

1you may assume the relevant square matrices are invertible.
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Periodic Time Series.

Name:

SID:

We now consider an application to the problem of modeling a
periodic time series zt which we approximate by a sum of K sinusoids:

zt ≈ ẑt =
K∑
k=1

ak cos(ωkt− φk) t = 1, 2, . . . , T (8)

The coefficient ak ≥ 0 are the amplitudes, ωk the frequencies, and φk the phases. In
many applications (and the one we consider) the frequencies ωk are apriori known and
fixed. We wish to find a1, . . . , aK and φ1, . . . , φK to ensure the means-squared value
of the approximation error (ẑ1 − z1, . . . , ẑT − zt) is small.

(f) Explain how to solve the aforementioned problem using (regularized) least squares
to estimate a1, . . . , aK and φ1, . . . , φK . Be explicit in the mappings between
the values zt, ak, ωk, φk in the original formulation and the standard regression
parametrization y,X,wλ (detailed in the beginning of the question), and the di-
mensions of the relevant vectors/matrices. Hint: Recall the identity a cos(ωt−φ) =
α cos(ωt) + β sin(ωt) for α = a cosφ and β = a sinφ, with a =

√
α2 + β2 and

φ = arctan(β/α).

Solution:

(a) Since n < p we have that X>X ∈ Rp×p has rank at most n and hence cannot be
invertible (although it is positive-semi-definite).

(b) X>X + λI is always invertible. We can see this by using the SVD of X which
gives that X>X + λI = V (S + λI)V >. Since S � 0 (because X>X is positive
semi-definite) the minimum eigenvalue of X>X + λI is bounded below by λ > 0,
so the matrix must be invertible.

(c) We can rewrite the ridge regression objective as an augmented least-squares prob-

lem as minw ‖ỹ − X̃w‖22 with X̃ =

[
X√
λIp

]
and ỹ =

[
y
0

]
. Writing down and

expanding the normal equations wλ = (X̃>X̃)−1X̃>ỹ = (X>X + λI)−1X>y.
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Alternatively, The first-order stationary conditions give that

X>(X>wλ−y)+λwλ = 0 =⇒ (X>X+λI)wλ = X>y =⇒ wλ = (X>X+λI)−1X>y.

(d) We can define X̃ =


√
λ1X1
...√
λkXk

 and ỹ =


√
λ1y1
...√
λkyk

 for which minw ‖ỹ − X̃w‖22 will

have the same solution.

We can expand out the solution from the single least-squares problem (from the
normal equations) as,

w = (
k∑
i=1

λiX
>
i X)−1(

k∑
i=1

λiX
>
i yi) (9)

(It’s fine if students did not explicitly write the expansion if their reformulation
was correct and they wrote the solution to a single least-squares problem).

(e) The dominant computational cost is computing the matrix inverse. First com-
puting

∑k
i=1 λiX

>
i X takes O(knp2) time. Inverting it takes an additional O(p3)

time.

(f) Using the identity we have that,

zt ≈
K∑
k=1

ak cos(ωkt− φk) =
K∑
k=1

αk cos(ωkt) + βk sin(ωkt) (10)

We can formulate as a linear regression where y ∈ RT is the concatenated vec-
tor of zt’s, the tth row of X (the analogue of datapoint) is the row vector of
(cos(ωkt), sin(ωkt)) ∈ R2K , and the concatenated vector of (αk, βk) corresponds
to wλ ∈ R2K . More explicitly, we can map the sinusoid data into the regression
parametrization as

y =

z1...
zT

 , (11)

and that,

X =

cos(ω1 · 1) . . . cos(ωk1) sin(ω1 · 1) . . . sin(ωk1)
...

. . .

cos(ω1 · T ) . . . cos(ωkT ) sin(ω1 · T ) . . . sin(ωkT )

 , (12)
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with

wλ =



α1
...
αk
β1
...
βk


, (13)

corresponding to the solution of the regression.

From this estimate of wλ we can recover estimates of ak and φk using the identities
a =
√
a2 + b2 and φ = arctan(β/α). Explicitly, we will estimate,

ak =
√

(wλ)2k + (wλ)k+K)2 (14)

and

φk = arctan

[
(wλ)k+K

(wλ)k

]
(15)

(It’s fine if students did not explicitly write down this last mapping if their pre-
vious formulation was correct and they explained how to recover ak, φk from the
regression).

Note the ordering of the features in the matrix X and wλ we have chosen here is
not essential – other orderings are equally valid.
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4. Positive-Definite Matrices and Hessians.

Let C ∈ Rn×n by a real, symmetric positive-definite matrix. Consider the function

fλ(x) = ‖C − xx>‖2F + 2λ‖x‖22

where x ∈ Rn.

(a) Compute the Hessian matrix of the function fλ(x) with respect to x, ∇2fλ(x).
Hint: Note that ‖C − xx>‖2F = ‖C‖2F + ‖x‖42 − 2x>Cx.

Name:

SID:
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(b) When is the Hessian matrix (which depends on x), positive semi-definite at all
points x? You should derive an “if and only if” condition expressed in terms of λ
and a function of the matrix C.

Name:

SID:

Solution:

(a) We can express the function as fλ(x) = (‖x‖22 + λ)2 − 2x>Cx+ ‖C‖2F − λ2. The
gradient and Hessian of fλ(x) at a point x ∈ Rn are

1

4
∇fλ(x) = (‖x‖22 + λ)x− Cx, 1

4
∇2fλ(x) = (‖x‖22 + λ)In + 2xx> − C.

(b) The Hessian is PSD everywhere if and only if

∀ x, v, ‖v‖2 = 1 : ‖x‖22 + λ ≥ v>(C − 2xx>)v

The above is equivalent to

λ ≥ max
x, v : ‖v‖2=1

v>Cv − 2(v>x)2 − x>x

= max
v : ‖v‖2=1

v>Cv −min
x

(x>x+ 2(v>x)2)

= λmax(C).
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since minx (x>x+ 2(v>x)2) = 0.
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