EECS 127/227AT 3/8/2018
L. El Ghaoui

Midterm: Solutions

1. Linear functions of images. In this problem we consider linear functions of an image
with 2 x 2 pixels shown below.

This given image can be represented as the 4-vector

o~ W

5

Each of the operations described below defines a linear transformation y = f(x), where
the 4-vector = represents the original image, and the 4-vector y represents the resulting
or transformed image. For each of these operations, provide the 4 x 4 matrix A for
which y = Az. Also in each case, determine the rank of the matrix A.

(a) Reflect the original image = across the vertical (i.e. bottom-to-top) axis.

(b) Rotate the original image = clockwise 90°.
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(c) Rotate the original image x clockwise by 180°.

(d) Set each pixel value y; to be the average of the neighbors of pixel i in the original
image. We define neighbors, to be the pixels immediately above and below and
to the left and right. For the 2 x 2 matrix, every pixel has 2 neighbors.

Solution:

(a) For y = Az, we have the reflection (across the vertical axis) matrix A:

o O = O
o O O
_— o O O
o= O O
Ol 00 N W
oo Ot W

Where y is the flipped image z. Here rank(A) = 4 since all the columns are
linearly independent.

(b) For y = Ax, we have the 90° rotation matrix A:

o O = O
_— o O O
S OO
o = O O
Ot 00 N W
~J Ot W oo

Where y is the rotated image z. Here rank(A) = 4 since all the columns are
linearly independent.



(¢) For y = Ax, we have the 180° rotation A:

000 1][3 5
00 1 o0f 7] |8
010 of 8] |7
100 0|5 3

Where y is the rotated image z. Here rank(A) = 4 since all the columns are
linearly independent.

(d) For y = Az, we have the matrix A:

01 1 0][3 7.5
100 2| |7] |4
100 18] |4
01 3 0]1|5 7.5

Where y; is the average of the neighbors of pixel i. Here rank(A) = 2 since there
are only 2 columns that are linearly independent.
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2. Fun with the SVD. Consider the 4 x 3 matrix
A= [al as ag] (1)

where q; for ¢ € {1,2,3} form a set of orthogonal vectors satistying ||a;||2 = 3, ||az]|2 =
2, ||a3||2 =1.

(a) What is the SVD of A? Express it as A = USVT, with S the diagonal matrix of
singular values ordered in decreasing fashion, and explicitly describe U and V.

(b) Write A as a sum of 3 rank-one matrices.

(c) What is the dimension of the null space, dim(null(A))?
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(d) What is the rank of A, rank(A)? Provide an orthonormal basis for the range of
A.

(e) Find the maximum “gain” of A (the amount that A can “expand” an input vec-
| Az|2 o

llzllz2 *

tors ¢, norm). More formally, what is the value of maxg.|;,),=1



A
Is
What are the singular values of A (in terms of the singular values of A)?

(f) If I3 denotes the 3 x 3 identity matrix, consider the matrix A = { ] € R™37?

Solution:

(a) The SVD of A= USV". Due to the orthogonality of the a; we have that

ATA=VS?V = (2)

o O O
O = O
_— o O

Thus V = I and S = diag(3,2, 1). Finally we have that U = AS~! which becomes
A=y % 7 )

(b) If we let e; denote the standard basis vectors in R? then we immediately obtain
that

A= aje] +agey + ase;. (4)

Expanding out the SVD of the matrix is also a valid answer.

¢) From part (a) all of the singular values of the A are non-zero. So the dimension
g
of the null space is 0. Alternatively, all the columns of A are orthogonal — so no
(non-zero) linear combination of them can equal zero.

(d) The rank of A is simply the number of non-zero singular values. So rank(A) = 3.

The columns of U (defined above) provide an orthonormal basis for the range of
A.



(e) As defined the maximum “gain” of A (also knowns as it spectral norm) is simply
given by its largest singular value. Hence the maximum “gain” of A is 3.

(f) We have that ATA=ATA+ I = V(S? + I3)VT. Hence if we denote o0; as the
singular values of A then the singular values of A are 5; = /o? + 1 which are
V10,5, V2.

It’s fine if they write either the algebraic expression or the explicit values for this
question.
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3. Regression and Applications. We first consider the regularized least-squares problem,
wy = argmin [ly — Xwl; + Afwls, (5)

and subsequently an application to modeling time series. To begin, we investigate
several fundamental properties of regression. Here, X € R™? is the data matrix (with
one data point per row), y € R™ is the response vector, and A > 0 is a “ridge”
regularization parameter.

(a) Assume, only for this part, that n < p. Is X " X invertible? Explain your reason-
ing.

(b) Now assume no relation between n and p. Is X' X + Al invertible? Explain your
reasoning.

(c) Show that the solution to the full problem can be written as

wy = (XX + X)X Ty (6)
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(d) Now suppose we would like find w that minimizes,

k
w=argmin{y _ \ifly; — Xywl3} (7)
=1

(so it jointly fits k different linear regression objectives). Explain how to re-
formulate this problem as a single least-squares problem with augmented X and
j in an objective ||§ — Xwl|2, and find the solution w to the aforementioned
problem!.

(e) What is the computational complexity (in big-O notation) of computing the so-
lution the previous question in terms of n,p, k7 Assume each X; € R"*P and
y; € R™ and once again that the relevant square matrices are invertible.

lyou may assume the relevant square matrices are invertible.
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Periodic Time Series. We now consider an application to the problem of modeling a
periodic time series z; which we approximate by a sum of K sinusoids:

K

2 RSB = ag cos(wpt — @) t=1,2,....T (8)

k=1
The coefficient a; > 0 are the amplitudes, w;, the frequencies, and ¢ the phases. In
many applications (and the one we consider) the frequencies wy, are apriori known and
fixed. We wish to find aq,...,ax and ¢q,..., ¢k to ensure the means-squared value
of the approximation error (2, — z1,..., 2r — 2) is small.

(f) Explain how to solve the aforementioned problem using (regularized) least squares
to estimate ay,...,ax and ¢1,...,¢x. Be explicit in the mappings between
the values z;, ap,ws, ¢ in the original formulation and the standard regression
parametrization y, X, w, (detailed in the beginning of the question), and the di-
mensions of the relevant vectors/matrices. Hint: Recall the identity a cos(wt—¢) =
acos(wt) + Bsin(wt) for « = acos¢ and B = asing, with a = /a?+ % and
¢ = arctan(f/«).

Solution:
(a) Since n < p we have that X' X € RP*? has rank at most n and hence cannot be
invertible (although it is positive-semi-definite).

(b) XTX + M is always invertible. We can see this by using the SVD of X which
gives that X" X + X[ = V(S + A)VT. Since S = 0 (because X "X is positive
semi-definite) the minimum eigenvalue of X "X + AI is bounded below by A > 0,
so the matrix must be invertible.

(c) We can rewrite the ridge regression objective as an augmented least-squares prob-
~ ~ X
lem as min, ||§ — Xwl||3 with X = [\/X]J and § = {g} Writing down and

expanding the normal equations wy = (X' X)X 7= (XX + )" 'XTy.
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Alternatively, The first-order stationary conditions give that

X' XTwy—y)+d wy =0 = (X' X+A)wy = Xy = wy = (X" X+ XTy.

\//\_1X 1 \//\_191

We can define X = : and g = : for which min,, [|§ — Xw||3 will
VAL Xg V Ak Yk

have the same solution.

We can expand out the solution from the single least-squares problem (from the
normal equations) as,

w = (Z )\iXiTX)_l(Z )\iXiTyi) (9)

(It’s fine if students did not explicitly write the expansion if their reformulation
was correct and they wrote the solution to a single least-squares problem).

The dominant computational cost is computing the matrix inverse. First com-
puting Y% | A X7 X takes O(knp?) time. Inverting it takes an additional O(p®)
time.

Using the identity we have that,

K

K
2 =~ Z ay, cos(wgt — @) = Z ay, cos(wyt) + By sin(wyt) (10)
k=1

k=1

We can formulate as a linear regression where y € R is the concatenated vec-
tor of z’s, the tth row of X (the analogue of datapoint) is the row vector of
(cos(wyt), sin(wyt)) € R?*X and the concatenated vector of (ag, 3x) corresponds
to wy € R?X. More explicitly, we can map the sinusoid data into the regression
parametrization as

Z1
y=1:| (11)
T
and that,
cos(wy - 1) ... cos(wgl) sin(wy-1) ... sin(wgl)
X = : , , (12)
cos(wy - T) ... cos(weT) sin(wy-T) ... sin(wiT)
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with
Qg

6973

8| (13)

5.

corresponding to the solution of the regression.

From this estimate of wy we can recover estimates of a; and ¢, using the identities
a =+va?+b? and ¢ = arctan(5/a). Explicitly, we will estimate,

ae = (W)} + (2 r)? (14)
and
= arctan M
O = et [(MA)k} (15)

(It’s fine if students did not explicitly write down this last mapping if their pre-
vious formulation was correct and they explained how to recover ay, ¢ from the
regression).

Note the ordering of the features in the matrix X and w) we have chosen here is
not essential — other orderings are equally valid.
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4. Positive-Definite Matrices and Hessians.

Let C' € R™™ by a real, symmetric positive-definite matrix. Consider the function
fa(z) = 1C =z |7 + 27|13
where z € R".

(a) Compute the Hessian matrix of the function f,(x) with respect to =, V2f\(z).
Hint: Note that |C — zz"||% = ||C||% + ||z||3 — 22" Cx.

13
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(b) When is the Hessian matrix (which depends on z), positive semi-definite at all
points 7 You should derive an “if and only if” condition expressed in terms of A
and a function of the matrix C.

Solution:

(a) We can express the function as fy(z) = (||z||3 + \)? — 22" Cz + ||C||% — A2, The
gradient and Hessian of f\(z) at a point x € R™ are

1 1
ZVfA(x) = (lz]|3 + M)z — Cu, Zv2fx($) = (||lz||2 + N1, + 222" - C.

(b) The Hessian is PSD everywhere if and only if
Va, v, lvla=1: 2]+ A >0 (C —2z2")v
The above is equivalent to

A > max v Cv—2w'z)?-2'x
z,v: ||v]2=1

= max o' Cv—min(z'z+20v' z)?)
v [ofl2=1 x

= Amax(C).

14



since min, (z'z + 2(v'z)?) = 0.
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